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[1] This paper reviews concepts for evaluating integrated environmental models and
discusses a list of relevant software-based tools. A simplified taxonomy for sources of
uncertainty and a glossary of key terms with ‘‘standard’’ definitions are provided in the
context of integrated approaches to environmental assessment. These constructs provide
a reference point for cataloging 65 different model evaluation tools. Each tool is
described briefly (in the auxiliary material) and is categorized for applicability across
seven thematic model evaluation methods. Ratings for citation count and software
availability are also provided, and a companion Web site containing download links for
tool software is introduced. The paper concludes by reviewing strategies for tool
interoperability and offers guidance for both practitioners and tool developers.
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1. Introduction

[2] Integrated environmental models have emerged as
useful tools supporting research, policy analysis, and deci-
sion making [e.g., Argent, 2004; Babendreier et al., 2007;
Clark and Gelfand, 2006; Matthies et al., 2007; Gerber,
2007]. In this regard, model integration often utilizes an
underlying framework, a set of consistent, interdependent,
and compatible science components (i.e., models, data, and
assessment methods) presented in a context of organizing
principles, standards, infrastructure, and software [U.S.
Environmental Protection Agency (USEPA), 2008]. Exam-
ples include Better Assessment Science Integrating Point
and Nonpoint Sources (BASINS) [Lahlou et al., 1998],
Community Hydrology Prediction System (CHPS) [McEnery
et al., 2005], Framework for Risk Analysis of Multimedia
Environmental Systems (FRAMES) [Babendreier and
Castleton, 2005], Modeling Environment for Total Risk
(MENTOR) [Georgopoulos and Lioy, 2006], Modular
Modeling System (MMS) [Leavesley et al., 1996], Multi-
scale Integrated Models of Ecosystem Services (MIMES)
[Van Bers et al., 2007], Object Modeling System (OMS)
[Ahuja et al., 2005], and Open Modeling Interface (OpenMI)
[Gregersen et al., 2007].
[3] Besides facilitating model integration, many frame-

works provide or leverage model-independent tools, addi-
tional software codes that are not intrinsic components of
any particular modeling program. Ideally, model-indepen-
dent tools should be easily applied to arbitrary models and
the user should not have to write additional software. In

practice, many model-independent tools require writing an
interface program to connect to a given model.
[4] A variety of model-independent tools support model

evaluation, the process of determining model usefulness and
estimating the range or likelihood of various interesting
outcomes. This paper focuses on model evaluation technol-
ogies and is motivated by the complexities of integrating
process-based numerical models. Integrating and evaluating
these types of models is challenging in many respects
[Beven, 2007; Jakeman and Letcher, 2003; Johnston et
al., 2004; Newbold, 2002], but such activity can yield a
solid foundation for environmental assessment.
[5] Although evaluating integrated numerical models was

the primary incentive for this work, the material is generally
applicable to a broader array of environmental models.
Thus, the intended audience is both (1) system level ‘‘frame
workers’’ seeking to incorporate model evaluation tools in
an integrated modeling framework and (2) modelers who
need evaluation tools for a standalone (i.e., nonframework)
application. The two groups tend to approach tool integra-
tion and usage from different perspectives.

1.1. Motivation and Overview

[6] To be useful in a policy context, models must be
evaluated using reproducible and robust procedures [e.g.,
Beven, 2007; McGarity and Wagner, 2003; Nicholson et
al., 2003; Oreskes, 2003; Gaber et al., 2009; Pascual,
2005; Schultz, 2008; USEPA, 1992; van der Slujis, 2007].
Much literature on model evaluation has been published,
ranging from discourse on the nature and meaning of
uncertainty [e.g., Beck et al., 1997; Beven, 2002; Konikow
and Bredehoeft, 1992; Montanari, 2007; Norton et al.,
2006; Rotmans and van Asselt, 2001a, 2001b; Trucano et
al., 2006; van Asselt and Rotmans, 2002; Walker et al.,
2003] to specific applications of various methods [e.g.,
Balakrishnan et al., 2005; Barlund and Tattari, 2001;
Gallagher and Doherty, 2007; Lindenschmidt et al., 2007;
Muleta and Nicklow, 2005; Schuol and Abbaspour, 2006;
Yu et al., 2001]. Related to these efforts is the development
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of quality assurance (QA) guidelines for environmental
modeling [e.g., Aumann, 2007; Jakeman et al., 2006;
Refsgaard and Henriksen, 2004; Refsgaard et al., 2005,
2007]. Although model evaluation is a major element of
QA, the topic is typically presented as a generic portion of
an overall modeling strategy that may or may not be
implemented.
[7] The present work complements QA guidance by

summarizing available tools for model evaluation; empha-
sizing approaches that characterize, quantify, or propagate
uncertainty. To facilitate an organized presentation of tools,
the paper first reviews sources and types of uncertainty and
categorizes methods of model evaluation. Existing literature
contains multiple uncertainty taxonomies and generally
utilizes an inconsistent model evaluation terminology.
These inconsistencies are partially addressed by introducing
both a glossary of ‘standard’ definitions for key terms and a
simple taxonomy for sources of uncertainty.
[8] Following the uncertainty review and method catego-

rization is a tabulation of model evaluation tools; published
algorithms or software codes that implement evaluation
methods in a model-independent manner. The main manu-
script includes a functionality matrix for identifying and
comparing tool capabilities, and the auxiliary material
contains a brief overview of each tool.1 Such a compendium
is inherently subjective, and deserving tools may have been
left out. The functionality matrix has been translated into a
publicly accessible Web site. An ‘‘in press’’ snapshot of the
site is reproduced in the auxiliary material, and a continually
updated site is also available (www.epa.gov/athens/re-
search/modeling/modelevaluation/index.html). The Web
site contains links for downloading full tool descriptions
and associated software codes (if available).
[9] The paper also discusses the use of multiple indepen-

dently developed tools for a given model evaluation exer-
cise. Barriers to tool interoperability are reviewed along
with strategies to overcome these barriers. The paper con-
cludes with a commentary on tool selection and the future of
integrated modeling.

2. Methods

[10] Several references provide excellent introductions to
the topic of evaluating environmental models [e.g., Beck,
1987, 2002; Burnham and Anderson, 2002; Cox and
Baybutt, 1981; Cullen and Frey, 1999; Funtowicz and
Ravetz, 1990; Hamby, 1994; Helton et al., 2006; Morgan
and Henrion, 1990; Saltelli et al., 2000, 2004; Vose, 2000].
In addition, aspects of model evaluation have been the
focus of recent conferences and workshops [e.g., Hanson
and Hemez, 2004; von Krauss et al., 2004] (see also IAHS-
PUB Workshop on Uncertainty Analysis in Hydrologic
Modeling, Lancaster University, Lancaster, UnitedKingdom,
2004, www.es.lancs.ac.uk/hfdg/uncertainty_workshop/
uncert_intro.htm, and TransAtlantic Uncertainty Colloquium,
University of Georgia, Athens, 2005, www.modeling.uga.
edu/tauc/index.html). Combining these information sources
with an appraisal of the relevant peer-reviewed literature
yielded a fairly comprehensive review.

2.1. Review of Model Evaluation Concepts

[11] In the context of regulation, model evaluation is
motivated by a desire to minimize the possibility of making
a ‘‘wrong’’ decision about a potentially adverse environ-
mental outcome. Central to such activity is the need to
characterize, quantify and propagate uncertainty, while
recognizing that both quantitative and qualitative compo-
nents are present [Funtowicz and Ravetz, 1990; Refsgaard et
al., 2007; Walker et al., 2003]. The desire to be compre-
hensive has yielded a broad variety of model evaluation
methods and packaged software tools.
[12] Numerous uncertainty taxonomies have been advo-

cated [e.g., Cullen and Frey, 1999; Funtowicz and Ravetz,
1990; Jager and King, 2004; Li and Wu, 2006; Refsgaard et
al., 2007; Regan et al., 2003; Rotmans and van Asselt,
2001b; Trucano et al., 2006; van der Sluijs et al., 2003;
Vose, 2000; Walker et al., 2003]. In some cases, different
taxonomies assign different meanings to the same terms; in
others, different taxonomies reflect alternative perspectives.
This intrinsic vagueness is an example of ‘‘linguistic uncer-
tainty’’ [Regan et al., 2003] and can engender significant
confusion among practitioners, stakeholders, and decision
makers. To establish a point of reference for comparing
tools, a glossary of common terms is included in the
auxiliary material.

2.1.1. Types of Uncertainty in Integrated
Environmental Modeling
[13] Uncertainty may be classified as reducible (i.e.,

stemming from erroneous knowledge or data) or irreducible
(i.e., stemming from inherent variability). From a decision-
making perspective, these have different ramifications and
should be separated, to the extent possible, when evaluating
models [Cullen and Frey, 1999; Hoffman and Hammonds,
1994; Nauta, 2000; Sonich-Mullin, 2001]. The total uncer-
tainty of a given quantity may be characterized in one of
four ways: purely irreducible, the quantity varies and the
associated population has been completely sampled without
error; partly reducible and partly irreducible, the quantity
varies and the associated population has been partially
sampled or sampled with error; purely reducible, the quan-
tity does not vary but has been sampled with error; and
certain, the quantity does not vary and has been sampled
without error [Cullen and Frey, 1999].
[14] While model evaluation traditionally utilizes a prob-

abilistic representation of uncertainty, alternative represen-
tations have also been considered [Helton and Oberkampf,
2004]. Types of reducible (i.e., empirical) input uncertainty,
for example, have been explicated in a variety of ways,
popularly subclassified by: random error; systematic error;
input sampling error; model output sampling error; inherent
randomness; correlation; and disagreement [Cullen and
Frey, 1999; Morgan and Henrion, 1990].

2.1.2. Sources of Uncertainty in Integrated
Environmental Modeling
[15] Numerous classification schemes for sources of

uncertainty have been introduced, and it is not always
possible to reconcile the differing taxonomies. Examples
include Linkov and Burmistrov [2003] (parameter, model,
and modeler uncertainty); Beck [1987] (initial system state,
parameter, input, and output uncertainty); Refsgaard et al.
[2007] (context, input, parameter, structural, and technical
uncertainty); and Morgan and Henrion [1990] (statistical

1Auxiliary materials are available in the HTML. doi:10.1029/
2008WR007301.
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variation, subjective judgment, linguistic imprecision, var-
iability, inherent randomness, disagreement, approxima-
tion). We propose a simplified taxonomy (described
below), consisting of quantitative input and model uncer-
tainty under an umbrella of qualitative modeler uncertainty.
[16] The modeler is responsible for determining and

assembling both an input vector (X) and the model (f(X))
operating on an input vector to simulate output. Different
modelers may make different decisions about the form and
content of X and f(X). Such modeler uncertainty can be
measured by comparative study (contrasting results of
multiple independent modelers) or by reduction via expert
elicitation (having multiple modelers develop a single,
consensus model or subset of models).
[17] Input uncertainty is associated with quantities in the

input and output vectors; these can be subdivided into input
data, response data, and model parameters. Input data refer
to the forcing functions, sources and sinks, and initial and
boundary conditions consumed by a model. Response data
represent site-specific measurements and expert testimony
that can be compared to model-simulated output. In general,
the usefulness (i.e., information content) of a given set of
input and response data will depend on the model structure
and the degree to which model input influences model
output. Model parameters are akin to input data, except
parameters are typically carefully tailored (e.g., via param-
eter estimation) to suit a particular modeling effort.
[18] Unlike input and response data, quantifying param-

eter uncertainty requires both the model and data. Also,
whereas input and response data can be irreducible, model
parameters usually are treated as purely reducible (i.e.,
constants for a given site and whose values are uncertain).
Systematic parameter variability or nonconstancy, for ex-
ample, is an important indicator of model error that often is
not explicitly addressed by modelers [Beck, 1987; Kuczera
et al., 2006;Wagener et al., 2003]. Failure to recognize such
variability confounds the associated uncertainty quantifica-
tion by mixing together aspects of parameter, model and
data uncertainty [Kavetski et al., 2002, 2006a, 2006b]. The
resulting bias may be viewed as an expression of hybrid
uncertainty associated with an unknown probability of
occurrence [Vose, 2000]. Depending on its significance,
the bias may complicate efforts to compare or assimilate
model parameter estimates generated for different models,
sites, or scenarios.
[19] Model uncertainty reflects the inability of a model,

even when provided with perfect (i.e., certain or purely
irreducible) input, to generate output indistinguishable from
corresponding real-world observations. Model uncertainty
may be subdivided according to uncertainties in model
structure (e.g., scientific hypotheses and governing equa-
tions), model resolution (e.g., spatiotemporal discretization,
boundary specification and scale dependence), and model
code (e.g., algorithms, numerical solvers). Another aspect of
model uncertainty is the correspondence (or lack thereof)
between model input-output and available data. For exam-
ple, values assigned to areal or volumetric model inputs are
often derived from point measurements. Likewise, areal or
volumetric model outputs are often compared against point
measured response data. Similar considerations apply to the
temporal domain and are particularly relevant to steady state
models.

[20] Various aspects of model uncertainty are amenable to
quantitative methods. For example, sensitivity analysis can
investigate the influence of model resolution and solver
precision [e.g., Ahlfeld and Hoque, 2008; Bedogni et al.,
2005], and identifiability analysis can reveal systematic
errors in model structure [e.g., Beck, 1987; Wagener et al.,
2003]. Propagation of model uncertainty is the subject of
ongoing research. One approach introduces systematic or
random model error (e.g., for numerical models) at model
runtime [Marin et al., 2003]. A similar tactic augments the
model expression to include explicit error terms (e.g., f(X) +
e). Bayesian network modeling can accommodate analo-
gous approaches [Clark, 2005; Clark and Gelfand, 2006].
Multimodel strategies, in juxtaposition, propagate model
uncertainty by considering multiple candidate models of the
system; each candidate is treated as a sample of the
complete distribution of possible models.

2.1.3. Methods of Model Evaluation
[21] Seven subjective categories of methods for quantita-

tive model evaluation were identified (see Table 1, which
also includes method subclassifications): data analysis
(DA), identifiability analysis (IA), parameter estimation
(PE), uncertainty analysis (UA), sensitivity analysis (SA),
multimodel analysis (MMA), and Bayesian networks (BN).
The identified categories reflect common terminology used
in the literature when describing the purpose of a given
model evaluation tool or algorithm. Assigning tools to a
particular method was occasionally difficult and necessarily
subjective, as there is a certain degree of overlap among the
various methods. For example, identifiability analysis con-
tains elements of both parameter estimation and sensitivity
analysis; multimodel analysis typically incorporates param-
eter estimation; and Bayesian networks are analogous to
simultaneous parameter estimation and uncertainty analysis.
Although not the focus of this paper, two essential evalu-
ation methods are model verification and model validation,
further defined in the glossary.
[22] Data analysis (DA) refers to analytical, statistical and

graphical procedures for evaluating and summarizing input,
response, or model output data. Capabilities typically in-
clude data screening and parameterization of distributions
for input and response data. A key attribute of geospatial
and time series data analysis [Brockwell and Davis, 1996;
de Smith et al., 2008] is the presence of scale-dependent
correlation structures. When characterizing sampled popu-
lations, descriptions could be expected to cover biotic and
abiotic entities.
[23] Identifiability analysis (IA) seeks to expose inade-

quacies in the data or suggest improvements in the model
structure [Jakeman and Hornberger, 1993; Ljung, 1999;
Söderström and Stoica, 1989; Young et al., 1996]. In many
cases, IA utilizes sequential parameter estimation or
performance-based sensitivity analysis to identify devia-
tions of the model from expected behavior [Beck and Chen,
2000; Beck, 1987; Wagener et al., 2003]. Alternatively, IA
can reveal model parameters that cannot be constrained
adequately because of insufficient quantity or diversity of
the response data.
[24] Parameter estimation (PE) quantifies uncertain model

parameters on the basis of the use of model simulations
and available response data. PE techniques yield either a
single solution or multiple solutions (i.e., parameter sets).
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Single-solution approaches view PE as an optimization
problem whose unique solution is a single, ‘‘best fit’’
configuration of model parameters. A variety of search
algorithms have been successfully applied to calibrate
various environmental models, and these can be subdivided
into local, global, and hybrid search techniques [e.g., Bekele
and Nicklow, 2005; Bell et al., 2002; Duan et al., 1992;
Essaid et al., 2003; Gan and Biftu, 1996; Giacobbo et al.,
2002; Matott and Rabideau, 2008; Mugunthan and
Shoemaker, 2006; Raghavan, 2003; Solomatine et al.,
1999; Tolson and Shoemaker, 2007]. Single-solution
parameter estimation yields point estimates of parameter
values and provides no information regarding the
confidence associated with such estimates. To address this
limitation, many PE codes [Doherty, 2004; Matott, 2005;
Poeter and Hill, 1998] compute various assumption-laden
postcalibration parameter statistics, including linear con-
fidence intervals, parameter correlation coefficients, and
parameter sensitivities. Some studies have estimated model
parameter uncertainty by examining PE global search
history [Evers and Lerner, 1998; Seibert and McDonnell,
2002; van Griensven and Meixner, 2006].
[25] Approaches for multiple-solution PE fall into two

categories (importance sampling, and Markov chain Monte
Carlo (MCMC) sampling) and yield full parameter distri-
butions rather than simple point estimates. PE, via impor-
tance sampling, seeks to identify a family of ‘‘acceptable’’
(i.e., behavioral or plausible) model parameter configura-
tions. Sampled model parameter configurations are divided
into behavioral and nonbehavioral groups, according to an
acceptance threshold for some objective function. This is
referred to as rejection sampling because the nonbehavioral
group is discarded (i.e., rejected) and model parameter
distributions are estimated using a weighted or bias-
corrected combination of the behavioral parameter sets.
Within the environmental modeling community, General-
ized Likelihood Uncertainty Engine (GLUE) [Beven and
Binley, 1992] is arguably the most popular tool for PE via
importance sampling.
[26] MCMC parameter estimation incorporates aspects of

importance and rejection sampling into a mathematically
robust procedure for evaluating conditional probability
distributions. To apply the MCMC technique, model pa-
rameter distributions initially are specified independently of

the response data (e.g., by assigning a uniform distribution
using literature-derived parameter bounds). The sampler
evolves these prior model parameter distributions into
posterior distributions that are updated and conditioned on
the response data.
[27] Regardless of the PE approach, several additional

considerations exist: selection of an objective function [e.g.,
Burnham and Anderson, 2002; Gan et al., 1997; Hill, 1998;
Kavetski et al., 2002; Nash and Sutcliffe, 1970; Yapo et al.,
1998], incorporation of prior information [e.g., Gupta et al.,
1998; Hill, 1998; Khadam and Kaluarachchi, 2004;
Mertens et al., 2004; Rankinen et al., 2006; Seibert and
McDonnell, 2002], and regularization of parameters [e.g.,
Doherty, 2003; Doherty and Skahill, 2006; Tonkin and
Doherty, 2005; Vermeulen et al., 2005; Vermeulen et al.,
2006]. A recent trend in calibrating environmental models is
considering multiple or competing objectives [e.g., Gupta et
al., 1998; Vrugt et al., 2003] and numerous multiobjective
optimization algorithms have been applied [e.g., Deb et al.,
2002; Hogue et al., 2000; Vrugt et al., 2003; Vrugt and
Robinson, 2007; Yapo et al., 1998].
[28] Uncertainty analysis (UA) methods propagate sour-

ces of uncertainty through the model to generate statistical
moments or probability distributions for various model
outputs. UA strategies include approximation and sampling
methods. Approximation methods characterize model out-
put uncertainty by propagating one or more moments (e.g.,
mean, variance, skewness, and kurtosis) of the various input
distributions through the modeling system. Examples in-
clude error propagation equations [Gertner, 1987], point
estimate methods [Tsai and Franceschini, 2005], and
various reliability methods [Hamed et al., 1996; Portielje
et al., 2000; Skaggs and Barry, 1996].
[29] Sampling methods characterize model output distri-

butions by propagating an intensive random sampling of
each input distribution. Sampling methods for uncertainty
analysis may be classified as Monte Carlo sampling (MCS),
stratified sampling, importance sampling, or a combination
[Cox and Baybutt, 1981; Helton et al., 2006]. Sampled
inputs are treated as statistically independent unless
correlation is inherent in the assumed distributions (e.g.,
multivariate normal) or restricted pairing techniques [Iman
and Conover, 1982] are utilized to handle covariance
structures.

Table 1. Quantitative Methods of Model Evaluation

Method Purpose of the Method Subclassifications

Data analysis (DA) to evaluate or summarize input,
response, or model output data

time series, population, geospatial

Identifiability analysis (IA) to expose inadequacies in the data or
suggest improvements in the model structure

temporal, behavioral, spatial

Parameter estimation (PE) to quantify uncertain model parameters
using model simulations and available response data

single solution, multiple solution

Uncertainty analysis (UA) to quantify output uncertainty by propagating
sources of uncertainty through the model

sampling methods, approximation methods

Sensitivity analysis (SA) to determine which inputs are most significant screening, local, global
Multimodel analysis (MMA) to evaluate model uncertainty or generate ensemble predictions

via consideration of multiple plausible models
quantitative, qualitative

Bayesian networks (BN) to combine prior distributions of uncertainty
with general knowledge and
site-specific data to yield an updated (posterior) set of distributions

hierarchical Bayesian,Bayesian decision networks
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[30] Monte Carlo sampling (MCS) draws unbiased ran-
dom samples from a prescribed distribution [Vose, 2000]
such that statistical sampling error can be determined using
standard theory [Cullen and Frey, 1999]. Given a desired
level of sampling accuracy and precision, the required
sample size can be determined unambiguously.
[31] Stratified sampling, e.g., Latin hybercube sampling

(LHS) [McKay et al., 1979], divides a given input
distribution into intervals, then generates samples from
each interval. For efficient sampling (i.e., fewer model
runs), intervals typically are constructed so that each has an
equal probability of occurrence. Two assumptions in
obtaining reliable model output distributions with fewer
model runs are the expectation that fewer model inputs
drive output variance, and that model behavior is monotonic
and linear [Campolongo et al., 2000; Helton and Davis,
2003; Morgan and Henrion, 1990].
[32] For uncertainty analysis, importance sampling typi-

cally is used to generate intentionally biased samples,
ensuring that particular kinds of behavior (e.g., rare but
highly consequential events) are analyzed [Helton et al.,
2006]. Importance sampling is also useful when an
unknown or difficult-to-sample input distribution is ‘‘envel-
oped’’ by an easily sampled alternative distribution [Chen,
2005]. In these cases, the alternative distribution is sampled
and the actual distribution is inferred using importance
weighting, in which sample weights reflect the probability
that a given alternative distribution sample could have come
from the actual distribution of interest. This feature makes
importance sampling an appealing choice for parameter
estimation.
[33] UA sampling schemes can be layered (i.e., nested,

hierarchical, or n stage). The amount of layering defines the
‘‘order’’ or ‘‘dimension’’ of the resulting sampling proce-
dure. Second-order schemes that separately analyze reduci-
ble and irreducible uncertainty are the most common [e.g.,
Marin et al., 2003; Wu and Tsang, 2004]. In principle, any
separation of uncertainties can be nested [Suter, 2006].
[34] Sampling approaches can be computationally expen-

sive when applied to complex models because of long run
times. Parallel processing can reduce the ‘‘wall time’’ (i.e.,
run time from a human perspective) of such analyses and is
particularly suited to embarrassingly parallel sampling
methods [Babendreier and Castleton, 2005]. Replacing
complex models with cheaper surrogate expressions is
another way to improve sampling efficiency. Surrogate
approaches include the stochastic response surface method
(SRSM) [Isukapalli et al., 1998], high-dimensional model
representation (HDMR) [Rabitz and Aliş, 1999; Wang et al.,
2005], Gaussian emulation machines (GEM)[O’Hagan,
2006], artificial neural networks (ANN) [van der Merwe
et al., 2007], and multivariate adaptive regression splines
(MARS) [Friedman, 1991]. Generalized polynomial chaos
approaches [e.g., Xiu and Karniadakis, 2002; Xiu et al.,
2002] and stochastic collocation [Xiu and Hesthaven, 2005]
can also reduce the runs needed for uncertainty estimation.
Although listing all available ANN tools is beyond the
scope of the work, the Fast Artificial Neural Network
library [Nissen, 2003] is provided as a representative free
and open source implementation.
[35] Sensitivity analysis (SA) studies the degree to which

model output is influenced by changes in model inputs or,

more generally, the model itself. SA methods help to
identify critical areas where knowledge or data are lacking.
Ideally, such information leads to reduction of uncertainties
in model output via model refinements or additional obser-
vations of the system under study, keying on sensitive
inputs with large reducible uncertainties.
[36] SA methods are classified as screening, local, and

global. Screeningmethods are efficient, simplistic techniques
to rank the importance of inputs, generally without regard to
possible interactions [e.g., Campolongo and Saltelli, 1997;
Campolongo et al., 2007; Morris, 2006; Saltelli et al.,
2004]. For highly parameterized models, screening methods
are extremely useful because model output is often heavily
influenced by just a few key inputs. Thus, screening can
help guide the subsequent application of more rigorous
methods. Screening methods are also employed to compare
the influence of different types of uncertainty.
[37] Local (i.e., differential) SA methods utilize gradient

(i.e., derivative) information to quantify sensitivity around a
specifically configured input (i.e., a single point in multi-
dimensional input space). Such methods are the core of
many single-solution, local search PE methods, e.g., Gauss-
Marquardt-Levenberg (GML) [Levenberg, 1944; Marquardt,
1963]. A key factor in local SA is the computation of
derivatives; relevant approaches include finite difference
perturbation methods and automatic differentiation [Bischof
et al., 1996; Elizondo et al., 2002; Griewank et al., 1996;
Yager, 2004]. Adjoint SA performs reverse local SA to
quantify sensitivity around a specifically configured output,
e.g., via specialized automatic differentiation techniques
[Hill et al., 2004; Petzold et al., 2006; Sandu et al., 2005].
[38] Global SA methods evaluate input sensitivity or

importance over the entire range of a model’s input space,
and can be categorized as variance decomposition, regres-
sion-based, correlation-based, parameter bounding, or some
combination thereof. Correlation- and regression-based pro-
cedures involve graphical or statistical postprocessing of
possibly rank-transformed samples collected using Monte
Carlo or stratified sampling [Hamby, 1994; Helton and
Davis, 2003; Helton et al., 2006; Hornberger and Spear,
1981;Manache and Melching, 2008; Spear and Hornberger,
1980]. Higher-order variance decomposition procedures, on
the other hand, require a more computationally demanding
sampling in order to evaluate complex multidimensional
integrals [Chan et al., 2000]. In total effect variance
decomposition procedures (e.g., the Fourier Amplitude
Sensitivity Test (FAST) [Cukier et al., 1978] and the Sobol’
[2001] method), the total output variance is expressed as the
sum of variances contributed by individual inputs (i.e., main
effects) plus those of their interactions (i.e., joint effects).
Inputs that are more sensitive contribute to a greater fraction
of the total variance. Parameter bounding techniques [e.g.,
Norton, 1987, 1996] allow for inversion of an acceptable,
bounded output set through a model to estimate input
parameter bounds through set-to-set mapping. Originally for
models with small numbers of parameters, recent advances
have expanded its applicability [Norton et al., 2005].
[39] Multimodel Analysis (MMA) typically evaluates a

given site-specific problem statement when multiple plau-
sible models can be developed by, for example, considering
alternative processes, using alternative modeling codes, or
by defining alternative boundary conditions [Pachepsky et
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al., 2006]. The resulting consideration of multiple models is
an important component of model evaluation [Burnham and
Anderson, 2002].
[40] Quantitative MMA methods assign performance

scores to each candidatemodel [e.g.,BurnhamandAnderson,
2002; Ye et al., 2008]. The scores help to rank the best
models or assign importance weights (e.g., for use in an
ensemble forecasting). Qualitative MMA methods rely on
expert elicitation, stakeholder involvement, and quality
assurance/quality control procedures to assess the relative
merits of alternative models [Funtowicz and Ravetz, 1990;
van der Slujis, 2007].
[41] Bayesian networks (BN) are probabilistic graphical

models that combine prior distributions of uncertainty with
general knowledge (e.g., as one or more models) and site-
specific data to yield an updated (posterior) set of distribu-
tions. In theory, Bayesian networks can simultaneously treat
uncertain input and response data, reducible and irreducible
model parameter distributions, and qualitative errors in
model code, structure and resolution [Clark, 2005; Clark
and Gelfand, 2006]. Two subclasses, hierarchical Bayesian
networks (HBN) [e.g., Borsuk et al., 2004; Clark, 2005;
Clark and Gelfand, 2006; Elsner and Jagger, 2004;Wikle et
al., 1998; Wikle, 2003] and Bayesian decision networks
(BDN) [e.g., Ames, 2002; Neilson et al., 2002; Sadoddin et
al., 2005; Varis, 1997], were identified. Developing a BN
involves: defining a directed acyclic graph that specifies a
network of conditional probability dependencies; defining
prior probability distributions for all graph nodes (i.e.,
sources of uncertainty); and defining a likelihood function
and sampling strategy (e.g., MCMC) for inducing posterior
distributions from prior distributions. Credal networks can
supplement BNs by allowing variables to be associated with
interval and set valued probabilities [Cano et al., 1993;
Cozman, 2000], leading to studies of robustness and
incomplete knowledge of uncertainties.

2.2. Catalog of Model Evaluation Tools

[42] Sixty-five tools were identified and these are briefly
summarized in the auxiliary material. Using the seven
model evaluation methods discussed in section 2.1.3, the
overall tool coverage consisted of: data analysis (5 tools),
identifiability analysis (10 tools), parameter estimation
(32 tools), uncertainty analysis (26 tools), sensitivity analysis
(33 tools), multimodel analysis (6 tools), Bayesian networks
(5 tools). Some are available for download as standalone
executables, complete with user manual; some are provided
as source code on request from a designated contact; and
others are available only as published algorithm descriptions.
In general, if an algorithm description was readily available
as part of a given software package, only the software
package(s) (i.e., not the algorithm descriptions) were consid-
ered to be tools. For this reason, common algorithms (e.g.,
LHS, FAST) are not listed as separate tools. Although free
and open source tools are better fits for integrated modeling
[Jolma et al., 2008; Voinov et al. 2008], some popular
proprietary tools are also included in the catalog.
[43] Table 2 is a functionality matrix for the tools eval-

uated, and Table 3 has a corresponding list of tool acro-
nyms. Each row of the matrix corresponds to a unique
model evaluation tool and the columns identify the capa-
bilities and availability of a given tool. Shorthand notation
used in the columns is expanded in the legend, and maps to

the subclassifications described in section 2.1.3. Citation
counts for each tool were generated using the SCOPUS
database [Burnham, 2006]. The counts provide a rough
gauge of the maturity and impact of a given tool, but do not
distinguish between actual tool usage and its simple citation,
e.g., as part of a literature review or as an alternative that
was considered, but disregarded. Citation counts were not
restricted to any particular set of publications. Thus, they
serve as an indirect and imperfect measure of the state of
practice in the environmental modeling community.
[44] AWeb site (www.epa.gov/athens/research/modeling/

modelevaluation/index.html), also presented in the auxiliary
material, was developed as a companion to the tool catalog.
The site augments Table 2 by including download links for
identified tools. To request table additions (e.g., for new or
overlooked tools) and modifications (e.g., changing a Web
address or other corrections) please contact the authors.

3. Discussion

[45] The catalog presented in section 2.2 illustrates the
wide variety of tools covering all aspects of model evalu-
ation. Integrating these tools would facilitate routine and
comprehensive model evaluations within the environmental
modeling community. However, there are numerous barriers
to achieving such integration. Many different programming
languages, compilers, and development platforms have been
utilized, leaving largely incompatible source codes. Further-
more, independent source codes are necessarily a combina-
tion of user and model interface code, algorithmic code, and
execution management code (i.e., code which exercises
arbitrary model executables and, if necessary, performs
associated error handling). If the code is not carefully
constructed, separating tool science from tool interface
and execution management can be difficult. But, such
separation is needed if integrated tools are to have a
consistent look and feel as well as consistent execution.
[46] Another common integration barrier is the preva-

lence of different input-output (I/O) file formats utilized by
the various standalone executable tools. I/O incompatibility
complicates both tool integration (i.e., linking outputs of
one tool to the inputs of another) and tool comparison (i.e.,
comparing different tools with similar functionality). Recent
attempts at I/O ‘‘standardization’’ include adopting PEST I/
O conventions [Doherty, 2004; Gallagher and Doherty,
2007; Skahill et al., 2009]), using the XML (extensible
markup language) format [Gernaey et al., 2006], and
several proposed APIs [Banta et al., 2006; Reichert, 2006]).
Whether or not one of these proposed standards can be
universally accepted and adopted remains to be seen. Rather
than developing yet another ‘‘locally arbitrary’’ I/O format,
future tool developers may prefer to adopt at least one of the
proposed ‘‘standards.’’
[47] From a modeler’s perspective, the ability to select

multiple standalone tools and have them interoperate via a
standardized I/O scheme is all that may be desired or,
indeed, required. For example, if DUE, DYNIA, GLUE
and MMA all followed the same I/O conventions, modelers
could conveniently exercise all seven of the model evalu-
ation methods with a single syntax. On the other hand, for
an integrated modeling frame worker, simply agreeing on
standard I/O may not be the preferred end game for tool
interoperability. One reason is that many frameworks em-
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Table 2. Tools for Model Assessmenta

Tool Name

Assessment Method Impact and Availability

DAb IAc PEd UAe SAf MMg BNh CITi AVj DISk

ACE 2 2 2, 4 1
ACUARS 4 3 1 2 1 3
AMALGAM 3 5 2 2
BaRE 4 3 1 75 1 3
BATEA 5 3 1 34 1 3
BFL 1 1 2–3 1
BFS 1 68 1 3
BMC 4 3 1 39 1 3
BMElib 1–3 54 2–4 1
BUGS 1 576 2–4 1
CANOPI 3 4 1 3
DAKOTA 1–3 1–2, 4 2 72 2–4 1
DBM 2 187 2–4 1
DDS, DDS-AU 2, 4 3 1 2 2, 4 1
DUE 1–3 7 2–4 1
DYNIA 1–2 51 2–4 1
EESA 1 4 2 1
FANN NA NA NA NA NA NA NA 6 2–4 1
GEM 5 1 5 9 3–4 1
GLUE 4 3 1 539 3–4 1
HBC 1 0 2–4 1
HDMR NA NA NA NA NA NA NA 44 2 1
IBUNE 5 3 1 2 3 1 3
JAGS 1 3 2–4 1
JUPITER 1 2 4 2–4 1
LH-OAT 1 10 2–4 1
MARS NA NA NA NA NA NA NA 814 3–4 1
MCAT 1–2 1,3 9 2–4 1
MCMC-SRSM 5 3 1 5 2–4 2
mGLUE 4 3 1 6 1 3
MICA 5 3 1 5 2, 4 2
MICUT 1, 3 4 2, 4 2
MLBMA, BMA 2 24/300 2, 3 1
MMA 2 11 2–4 1
MOCOM 2 159 2 2
MOGSA 3 63 2 2
MOSCEM 5 3 1 69 2–4 1
NLFIT 2, 5 3 1 135 2, 3 2
NSGA 2 814 2 1
NUSAP 1 37 NA NA
OSTRICH 1–3 2 2 7 2–4 1
ParaSol 4 3 1 2 2–4 1
PEAS 1 2 2 2–4 2
PEST 1–3 3–4 2 197 2–4 1
PIMLI 1 5 3 1 24 1 3
PSO 2 2473 2–4 1
PyMC 5 3 1 1 0 2–4 1
R 1–3 2439 2–4 1
ReBEL 1 6 2–4 1
RIMME 3 3 4 2 1
SADA 1–2 2 3–4 1
SAMPLING/ANALYSIS 1 5 2 2
SARS-RT 3–4 11 1 3
SCE 2 533 2–4 1
SCEM 5 3 1 74 2–4 1
SIMLAB 1–2 1, 3–5 101 2–4 1
SODA 1 5 3 1 26 1 3
SOLO 2 29 2 2
SRSM NA NA NA NA NA NA NA 32 2 1
SUFI,SUFI-2 4 16 1 3
SUNGLASSES 3 3 2–4 1
UCODE 1 4 2 148 2–4 1
UNCERT 1–3 20 2–4 1
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ploy database, dictionary, or object-oriented concepts to
store and transfer data through the integrated modeling
system. In this paradigm, frameworks do not rely on file-
based I/O and associated formatting to transfer data; where
file-based I/O is required (e.g., when interfacing with legacy
models) special translation software must be constructed.
[48] Another drawback to purely I/O-based standardiza-

tion, again from the frame worker’s perspective, is that
execution management issues are not addressed. Like many
integrated modeling frameworks, standalone model evalua-
tion tools tend to ‘‘wrap’’ around some underlying execut-
able; where ‘‘wrap’’ is defined as having control over
program inputs and execution, and responsibility for han-
dling errors and exceptions. While model evaluation tools
focus on wrapping themselves around models, frameworks
go one level further and seek to wrap themselves around
both the model and the evaluation tools. Successfully
incorporating model evaluation tools within an integrated
modeling framework thus requires modifying or kludging
(i.e., tricking) the tool to defer to the enveloping framework
for execution management.
[49] Because of execution management issues and a

general lack of file-based I/O, attempts at framework
standardization have focused on defining core ‘‘interface
level’’ programming standards. For example, the calibra-
tion, optimization, and sensitivity and uncertainty (COSU)
[Babendreier, 2003] API emerged from a recently convened
international workshop on environmental modeling
[Nicholson et al., 2003]. Rather than specifying a file
format for data exchange, COSU specifies a universal data
type and subroutines for separately requesting and invoking
a computational task. In addition to supporting parallel
operations, this construct facilitates deference of execution
management from evaluation tool to integrated framework
(i.e., a tool requests a computational task and the framework
invokes it). Alternatives to the COSU API are also
available. For example, the OpenMI [Gregersen et al.,
2007] framework specifies efficient data exchange protocols
that could be utilized to ensure tool interoperability.

4. Conclusions

[50] A total of 65 software tools were identified and
categorized according to seven model evaluation methods:
data analysis, identifiability analysis, parameter estimation,

sensitivity analysis, uncertainty analysis, multimodel anal-
ysis, and Bayesian networks. A Web site (www.epa.gov/
athens/research/modeling/modelevaluation/index.html) was
developed to aid tool distribution. The identified tools are
model-independent and can, in principle, be applied to
evaluating any environmental model or modeling system.
However, tool interoperability and comparison is compli-
cated by the use of different coding languages, input-output
formats, and approaches to execution management.
[51] The review portion of this work is intended to serve

as a springboard for identifying and understanding relevant
concepts, methods, and issues. The tool catalog and asso-
ciated Web site are designed to facilitate selection and
acquisition of necessary tools for comprehensive model
evaluation. An extensive tool catalog has been compiled,
and this may minimize redundant tool development in the
future.
[52] The assembled list of tools contains a considerable

amount of overlapping functionality. This redundancy con-
founds practitioners tasked with selecting the best tool for
the job. Unfortunately, recommending specific tools from
the list is beyond the scope of this work, since few of the
tools were tested or exercised. In this context, it is more
useful to prioritize the underlying methodologies, as op-
posed to actual technology implementations. Ideally, core
model evaluation activities performed for decision support
should include (1) data analysis to characterize any avail-
able input and response data, (2) sensitivity analysis to
determine the most important set of inputs, and (3) uncer-
tainty analysis to establish the range or likelihood of
predicted outcomes. If sufficient response data is available,
additional activities may also include identifiability analysis
and parameter estimation. Parameter estimation approaches,
in order of decreasing preference, are those that yield (1)
full parameter distributions, (2) point estimates supported
with relevant parameter statistics, and (3) point estimates
only. Alternatively, and if sufficient expertise is available,
Bayesian networks may be utilized in lieu of, or in addition
to, parameter estimation and uncertainty analysis. Given
adequate resources and knowledge base, several alternative
models should be developed and subjected to multimodel
analysis.
[53] Looking to the future of integrated environmental

modeling, it is worth noting that high level languages (e.g.,
MatLAB, Octave, Python, and R) are becoming increasingly

Table 2. (continued)

Tool Name

Assessment Method Impact and Availability

DAb IAc PEd UAe SAf MMg BNh CITi AVj DISk

UNCSIM 1 2, 4–5 1–3 2 8 2–4 1
WebGUAC 1 17 NA NA

aNA means not applicable; tool for surrogate-based modeling.
bDA, data analysis; 1, population data; 2, geospatial data; 3, time series data.
cIA, identifiability analysis; 1, temporal; 2, behavioral; 3, spatial.
dPE, parameter estimation; 1, local; 2, global; 3, hybrid; 4, importance sampling; 5, MCMC sampling.
eUA, uncertainty analysis; 1, Monte Carlo; 2, stratified sampling; 3, importance sampling; 4, approximate.
fSA, sensitivity analysis; 1, screening; 2, local; 3, correlation based; 4, regression based; 5, variance based.
gMMA, multimodel analysis; 1, qualitative; 2, quantitative.
hBN, Bayesian networks; 1, hierarchical Bayesian network; 2, Bayesian decision network.
iCIT, number of citations determined by a search of SCOPUS database.
jAV, available materials; 1, method description only; 2, source code; 3, manual; 4, executable.
kDIS, form of software distribution; 1, Web download; 2, on request; 3, software not available.
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Table 3. List of Tool Acronyms

Tool Name Acronym Description

ACE alternating conditional expectation
ACUARS automatic calibration and uncertainty assessment using response surfaces
AMALGAM a multialgorithm genetically adaptive multiobjective method
BaRE Bayesian recursive estimation
BATEA Bayesian total error analysis
BFL Bayesian filtering library
BFS Bayesian forecasting system
BMC Bayesian Monte Carlo
BMElib Bayesian maximum entropy library
BUGS Bayesian inference using Gibbs sampling
CANOPI confidence analysis of physical inputs
DAKOTA design analysis kit for optimization and terascale applications
DBM data-based mechanistic modeling
DDS, DDS-AU dynamically dimensioned search, DDS for approximation of uncertainty
DUE data uncertainty engine
DYNIA dynamic identifiability analysis
EESA elementary effects sensitivity analysis
FANN fast artificial neural network library
GEM Gaussian emulation machine
GLUE generalized likelihood uncertainty engine
HBC hierarchical Bayesian compiler
HDMR high-dimensional model representation
IBUNE integrated Bayesian uncertainty estimator
JAGS just another Gibbs sampler
JUPITER joint universal parameter identification and evaluation of reliability
LH-OAT Latin hypercube sampling one factor at a time
MARS multivariate adaptive regression splines
MCAT Monte Carlo analysis toolbox
MCMC-SRSM Markov chain Monte Carlo stochastic response surface method
mGLUE modified GLUE
MICA model-independent Markov chain Monte Carlo analysis
MICUT model-independent calibration and uncertainty analysis toolbox
MLBMA, BMA maximum likelihood Bayesian model averaging
MMA multimodel analysis
MOCOM multiobjective complex evolution
MOGSA multiobjective generalized sensitivity analysis
MOSCEM multiobjective shuffled complex evolution Metropolis
NLFIT Bayesian nonlinear regression suite
NSGA nondominated sorting genetic algorithm
NUSAP numeral, unit, spread, assessment, and pedigree
OSTRICH optimization software toolkit for research in computational heuristics
ParaSol parameter solutions
PEAS parameter estimation accuracy software
PEST parameter estimation toolkit
PIMLI parameter identification method localization of information
PSO particle swarm optimization
PyMC Python-based Markov chain Monte Carlo library
R package for statistical computing
ReBEL recursive Bayesian estimation library
RIMME random-search inverse methodology for model evaluation
SADA spatial analysis and decision assistance
SAMPLING/ANALYSIS screening level sampling and sensitivity analysis tool
SARS-RT sensitivity analysis based on regional splits and regression trees
SCE shuffled complex evolution
SCEM shuffled complex evolution Metropolis
SIMLAB simulation laboratory for UA/SA
SODA simultaneous optimization and data assimilation method
SOLO self-organizing linear output map
SRSM stochastic response surface method
SUFI, SUFI-2 sequential uncertainty-fitting algorithm
SUNGLASSES sources of uncertainty global assessment using split samples
UCODE universal code for inverse modeling
UNCERT uncertainty analysis, geostatistics and visualization toolkit
UNCSIM uncertainty simulator
WebGUAC Web site guidance for uncertainty assessment and communication
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popular delivery mechanisms for emerging tools (e.g., see
tool summaries in the auxiliary material) and environmental
models (e.g., TimML [Bakker, 2006] and qtcm [Lin, 2008]).
Frameworks that can easily accommodate such languages
will have an edge over those that only support lower-level
languages (e.g., FORTRAN, C/C++, and Java).
[54] In the short term, a lack of consistent standards for

dealing with I/O and execution management is likely to be
an ongoing problem for both tool development and model
integration. Efforts to overcome these barriers have resulted
in a plethora of institutional frameworks, each offering a
unique approach. Evidenced by this survey, model evalua-
tion tool developers have provided a wide array of useful,
but highly repetitive, noninteroperable model evaluation
technologies. On some level, tool developers are themselves
frame workers, except that they prescribe I/O and execution
management schemes to facilitate model evaluation rather
than model integration. Thus, the irony in design of both
model evaluation tools and integrated modeling systems is
that everyone wants to define the ‘‘standard’’ and be the
integrative framework. This presents natural, yet unre-
solved, conflict for a community that would benefit from
sharing models and model evaluation tools.
[55] Ultimately, we anticipate robust community support

for only a small number of de facto frameworks within
different regulatory and application modeling domains.
Ongoing multi-institutional efforts will then establish con-
sistent standards across these frameworks (such as those
discussed by USEPA [2008]). Such advancements will send
a clear message to developers: tools that adhere to interoper-
ability standards will have broader support, greater usage,
and more impact. In this way, standards and frameworks
will encourage enhanced tool interoperability and facilitate
a much more comprehensive model evaluation paradigm.
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