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Quantifying Uncertainty In
Ecosystem Studies
| THOWGHT | WAS

INTERESTED IN UNCERTRINTY
BuT wow UM woT So SURE

LTER All Scientists Meeting
Estes Park, Colorado
Sept. 10-13, 2012



Agenda

Introductions (what's your biggest source of uncertainty?)

5 minute presentations (5 minutes questions/discussion)
* Mark Harmon: Introduction to sources of uncertainty
* Adam Skibbe: Precipitation interpolation
* Xuesong Zhang: Precipitation
* John Battles: Biomass
* Mark Green: Streams
* Ruth Yanai: Soils
e Jeff Taylor: NEON

Overarching topics: Introduction followed by group discussion
* Craig See: Gaps

* Carrie Rose Levine: Monitoring

A plea for your involvement
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What iIs QUEST?

(AN

QUEST is aresearch network interested in improving
understanding and facilitating use of uncertainty analyses in
ecosystem research

Funding through LNO, NSF

Working group meetings (Boston, Oregon, New York, NH)
Held educational workshops (e.g., ESA)

Several publications




Introduction

* Name

 Affiliation

» Site

 What’s your biggest source of
uncertainty?



Discussion Questions

Overarching topics: Intro followed by group discussion

Craig See: Gaps
Carrie Rose Levine: Monitoring

Should we use consistent approaches to estimating uncertainty for
every observation?

How does one derive an optimal sampling strategy for minimizing
uncertainty?

Is it always possible to estimate uncertainty?



MARK HARMON



Sources of Uncertainty

Measurement error-technique and technology
Sampling error-natural variability in space and time

Regression/conversion (parameter) error- models
used to convert one set of numbers to another

Model selection error (structural error)-uncertainty
of knowledge/representation
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ADAM SKIBBE



CWT Precip Models
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IDW Comparisons

Model Comparisons

Spline
High 190
Low 111

Radial Basis
High 192
Low 114

Kriging
High 183
Low 135

Kernel
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IDW AVG 2000-2009

Relative Values
e High

o

Precipitation (mm)
e Staticns Observed
+ Stations Estimated

[ < 1900

[ 1900 - 2000

B 2000 - 2100

I 2100 - 2200

[ 2200 - 2300

B 2300 - 2400

I 2400 - 2500

I 2500 - 2600

[ 2500 - 2700

[ 2700 - 2800

[ 2800 - 2900

[ > 2900

AND Comparisons










,,.
R
Wil

i

’:(,'







XEUSONG ZHANG



Enhancing Spatial Precipitation Interpolation
using Auxiliary Data

Xuesong Zhang

Joint Global Change Research Institute
Pacific Northwest National Laboratory and University of Maryland

Great Lakes Bioenergy Research Center Thrust 4 - Sustainability
Michigan State University



i | <patial Variation Model

 Materon (1969) proposed a general representation of
spatial variables:

—Z(x) =m(x) + &'(x) + £'(x)

— where Xx is a spatial location, m is deterministic
component, €’ represents a stochastic component driven
by unknown factors, €'’ denotes measurement error.

e Basic form of Kriging

—Z(x) = m(x) + e(x)

— where m is global or locally varying mean, and ¢ is residual
that is spatially correlated.



simole Krig

« Best Linear Unbiased Estimator (BLUE)

e Estimate residual at an unsampled point by a
linear combination of the observed residuals at
surrounding points.

—Z(w) —m(u) =X, A [Z(x) — m(x))]
 Allow for flexible m(u) = N

—m=- i=1Z(x)

— where Y is external variable, such as
— elevation, spatial coordinate, NEXRAD



An example in Little River
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brecinitat

e Spatial precipitation estimated by different
methods on October 3, 2002
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Evaluation statistics

e Estimation Efficiency

n g7 T
EE =1.0 —— ——
qZ(x) — Z(x).
— where Z{x) estimatgd precipjtationvatuesat
and Z gx) is mean value 6f the ¥ein-gadige o
| Evaldation coefficients
precipitation vatues.
Mean 63.7 73.43 60.95
Oct. 13,
002 SDV 5.84 19.14 16.52
EE 0.10 -0.26 0.65
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HEXRAD_SWAT =l

L

NexRad processing and correction tool for SWAT
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% HEXRAD SWAT

NexRad processing and correction tool for SWAT

Define input data Interpolation parameters Output zettings

Select interpolation method

B azic Approaches

" Mo Caorrection
[ Biaz Adjustment [Bid)

" Linear Regreszion and Inverse Distance ‘Weighted [LRIDYW] Power |2

Geo-ztatizhical Approaches

[ Simple Kriging with warming Local Means [SElm)
" Krniging with External Drift (ED)

" Regrezsion Friging [FE)

(" Colocated Cokriging

Spherical

Semivariogram model 5

Lag rium

Lag zize

b aximum sezearch number
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% HEXRAD SWAT

Define input data

Time zernies settings
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JOHN BATTLES



Estimating uncertainty in forest biomass:
What exactly should we be reporting?

QUEST Workshop —LTER ASM 2012
John Battles
Hubbard Brook

Fig. 2 in Zapata-Cuartas et al. 2012.



W6: Hubbard Brook Reference Watershed
with uncertainty estimates
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Sources of uncertainty in forest carbon estimates

Measurement
e.g., diameter and height measurements (tree)
species (tree)
density (plot)

Biomass transfer functions (tree level)
e.g., allometric equations, volume equations, wood density estimates

Sampling error (class level)
error when plots in a class are aggregated to get central
tendencies (e.g., average to get mean value)

Model selection (tree level)
related to transfer function



log10(PIRU$SABOVE)

Attention has focused on two aspects:

1. The statistics around the transfer function where tree measurements
are used to calculate mass.
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2. Propagating uncertainty as we scale up from
trees to plots to stands to forests.




log10(PIRUSABOVE)

Many ideas on how to best develop transfer functions.
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Methods for uncertainty assessment

Analytical error propagation
e.g., Taylor expansions

Monte Carlo simulation

Hierarchical analysis
e.g., Bayesian state space model
Nested likelihood functions

Ad hoc approaches
e.g., various forest offset/carbon accounting protocols

None



Back to the question: What should we be reporting?

1. Science
Leave to peer review process with expectation uncertainty
will be addressed.

2. What about resource managers?
e.g., National Forest and National Parks now required to
monitor forest carbon pools.

3. What about carbon/GHG accounting protocols in states/regions?
National standards and international standards

4. What about remote sensing approaches calibrated with
biometric results?



MARK GREEN



Lab stuff

sampling
protocols

Grab Samples
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RUTH YANAI



Sources of Uncertainty in Soil Nutrient Contents

Analytical Uncertainty Sampling Uncertainty




Forest Floor N (kg/m2)

Nitrogen in the Forest Floor
Hubbard Brook Experimental Forest
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We can’t detect a difference of 1000 kg N/ha in the mineral soil...

Table 7. Total soil pools of N and C and oven-dry mass by soil
mapping unit and soil stratum for Watershed 5 at the Hub-
bard Brook Exp. For. sampled in July 1983.

Mapping Soil N Soil C
unit n content content Soil mass
N kg ha Mg ha*!

: Forest floor
Tun-Lym 28 1400at 34a 90a
Berkshire 19 1100a 25a 81a
Skerry 6 1300a 27a = 96a
Beckett 2 1100a 25a 6la

_ ' Minerai soil
Tun-Lym 28 58002 © 130a 2500¢
Berkshire 19 5600a 120a 3800b
Skerry 6 7100a 150a 4300ab
Beckett 2 5800a 130a 4100abc

_ Total solum

Tun-Lym 28 7200a 160a 2700a
Berkshir 19 6700a 150a 3900b
Skerry 6 8300a 180a 4400ab
Beckett 2 7000a © 160a 4200ab

t Mean values within columns in a soil stratum which are followed by the |
same letter are not significantly different at p = 0.05 using Tukey's
multiple pairwise comparison.

How should we estimate the uncertainty in change over time in soil N?



JEFF TAYLOR



A National Observatory: 20 Eco-Climatic Domains
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Terrestrial Measurements

AERIAL VIEW
INCIDENT/SYNOPTIC SCALE

NOT TO SCALE

FLUX SCALE IS A FUNCTION OF:
1. Aimospheric Stability 3. Wind Speed
2. Wind Direction 4. Surface Roughness

A

FLUX SCALE

{from &0 m to 200 m - 1500 m)

>
— <
2

SOIL SCALE
{from 40 m 1o 100 m - 200 m)




NEON Data Products

584 level 1 data products

Level 0 Level 1

Raw Data Calibrated Data

Level 2 Level 3 Alejogtinls
Temporally Spaually Process,
Rectified Data Bectnedibata Model
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Moda] Prodieis
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Challenges

Coordinating Standardized Approaches
(Observer Bias)

Combining Uncertainties Across Scales

Metadata

Reprocessing



neen

National Ecological Observatory Network

The National Ecological Observatory Network is a project sponsored by the National Science
Foundation and managed under cooperative agreement by NEON Inc.

WWW.Nneoninc.org

itaylor@neoninc.org

jtaylor@neoninc.org

53


http://www.neoninc.org/
mailto:hloescher@neoninc.org
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Why gap filling?

FWENTY IDMOLIA

Credit: Odonfiction.wordpress.com



What do you do?

 Sometimes its not important (finding mean)

e Sometimes we need a continuous records
(calculating pools, fluxes)

e Often a reasonable estimate can be made
based on other available data



Gap filling (imputation) methods

e Use of historical averages

* Bayesian Bootstrapping

* Expectation-maximization algorithm
* Use neighboring values

— Direct substitution
— Regression

All gap filling methods introduce
new error into the final total!
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Precipitation gaps at Sevilleta

Volume and chemistry measurements taken from 20
collectors across SEV from 1989-1995.

Volume: 1 Vel .4 Volume: O
Chemistry: 8 AO um.e. Chemistry: 7
: Chemistry: 6

//
= Volume: 1
Chemistry: 6

)

Volume: 1
C'}]emistry: 4

——____ Volume: 3
Chemistry: 12

How do we incorporate “gap uncertainty” into annual
nitrate deposition estimates?



Statistics

e Stepwise regressions using neighboring gauges as
predictor variables
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CARRIE ROSE LEVINE



Statistical Approaches

We used certain data analysis methods depending on the available data (pg. 7).

Model Type Time Series Multiple Sites

Repeated measures mixed
effects model
Detectable difference X
analysis
Mann Kendall trends test
and General Linear Model

X X

X

Repeated measures mixed effects model: a generalized linear model that can include
random as well as fixed effects. Time series within each site treated as a repeated

measure, and random subsamples of sites were selected to generate hypothetical
sampling schemes.

Detectable difference analysis: describes the ability to detect significant changes in a

future survey. The input variables include the sample size and standard deviation of the
original survey and an alpha and power level.

Mann Kendall trends test and General Linear Model: Mann Kendall test was used to
assess trends in time series based on the Kendall rank correlation. When sampling took
place throughout the year and seasonal trends were present, we used a Seasonal Mann

Kendall trend test. General linear regression and the standard error of the were used to
assess slope and the uncertainty in trends



504 Model Estimate (mgiL)

504 Model SE (mglL)
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