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Agenda 
Introductions (what's your biggest source of uncertainty?) 
 
5 minute presentations (5 minutes questions/discussion) 
• Mark Harmon:  Introduction to sources of uncertainty 
• Adam Skibbe: Precipitation interpolation 
• Xuesong Zhang: Precipitation 
• John Battles: Biomass 
• Mark Green: Streams 
• Ruth Yanai: Soils 
• Jeff Taylor: NEON 

 
Overarching topics: Introduction followed by group discussion 
• Craig See: Gaps 
• Carrie Rose Levine:  Monitoring 

 
A plea for your involvement 



Bormann et al. 1977. Science. 



What is QUEST? 

QUEST is a research network interested in improving 

understanding and facilitating use of uncertainty analyses in 

ecosystem research 

• Funding through LNO, NSF 

• Working group meetings (Boston, Oregon, New York, NH) 

• Held educational workshops (e.g., ESA) 

• Several publications 
 

www.quantifyinguncertainty.org  
quantifyinguncertainty@gmail.com 



Introduction 

• Name 

• Affiliation 

• Site 

• What’s your biggest source of 

uncertainty? 



Discussion Questions 

 

Overarching topics: Intro followed by group discussion 
 
Craig See: Gaps 
Carrie Rose Levine:  Monitoring 
 
Should we use consistent approaches to estimating uncertainty for 
every observation? 
 
How does one derive an optimal sampling strategy for minimizing 
uncertainty? 
 
Is it always possible to estimate uncertainty? 
 



MARK HARMON 



Sources of Uncertainty 

• Measurement error-technique and technology 

 

• Sampling error-natural variability in space and time 

 

• Regression/conversion (parameter) error- models 
used to convert one set of numbers to another 

 

• Model selection error (structural error)-uncertainty 
of knowledge/representation 
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Judging progress objectively 

Current system 

Ideal system 

timeline 



ADAM SKIBBE 



CWT Precip Models 
 



Spline 
High 190 
Low 111 
 
Radial Basis 
High 192 
Low 114 
 
Kriging 
High 183 
Low 135 
 
 
 
 
 
 
 
 
 
 
 
 

Kernel 
High 182 
Low 134 
 
IDW 
High 183 
Low 135 
 
Global Polynomial 
High 196 
Low 119 

IDW Comparisons 
 

Model Comparisons 
 



AND Comparisons 
 











XEUSONG ZHANG 

 



Enhancing Spatial Precipitation Interpolation 
using Auxiliary Data 

 
Xuesong Zhang 

 

Joint Global Change Research Institute 

Pacific Northwest National Laboratory and University of Maryland 

 

Great Lakes Bioenergy Research Center Thrust 4 - Sustainability 

Michigan State University 



Universal Spatial Variation Model 

• Materon (1969) proposed a general representation of 
spatial variables: 
 

– 𝑍 𝒙 = 𝑚 𝒙 + 𝜀′ 𝒙 + 𝜀′′(𝒙) 
 

– where 𝒙 is a spatial location, 𝑚 is deterministic 
component, 𝜀′ represents a stochastic component driven 
by unknown factors, 𝜀′′ denotes measurement error. 
 

• Basic form of Kriging 
 

– 𝑍 𝒙 = 𝑚 𝒙 + 𝜀 𝒙  
 

– where 𝑚 is global or locally varying mean, and 𝜀  is residual 
that is spatially correlated.  



Simple Kriging 
• Best Linear Unbiased Estimator (BLUE) 

• Estimate residual at an unsampled point by a 
linear combination of the observed residuals at 
surrounding points. 

– 𝑍 𝒖 − 𝑚 𝒖 =  𝜆𝑖
𝑛
𝑖=1 ∙ [𝑍 𝒙 − 𝑚 𝒙 ] 

• Allow for flexible 𝑚 𝒖  

 

– 𝑚 =
1

𝑛
 𝑍(𝒙)𝑛

𝑖=1   

– 𝑚 𝒙 = 𝛽0 + 𝛽1 ∙ 𝑌1(𝒙) + 𝛽2 ∙ 𝑌2(𝒙) 

 

– where Yi is external variable, such as  

–  elevation, spatial coordinate, NEXRAD 
 

 

 
 



An example in Little River 
Experimental Watershed 

 



• Spatial precipitation estimated by different 
methods on October 3, 2002 

• 𝑚 =
1

𝑛
 𝑍(𝒙)𝑛

𝑖=1                                𝑚 𝒙 = 𝛽0 + 𝛽1 ∙

𝑁𝐸𝑋𝑅𝐴𝐷(𝒙)  

 

 

Precipitation maps 
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Evaluation statistics 

• Estimation Efficiency 

𝐸𝐸 = 1.0 −
 [𝑍 𝒙 − 𝑍 𝒙 ]𝑛

𝑖=1

 [𝑍 𝒙 − 𝑍 (𝒙)𝑛
𝑖=1 ]

 

– where 𝑍 𝒙  estimated precipitation values at 𝒙, 
and 𝑍 (𝒙) is mean value of the 𝑛 rain-gauge observed 
precipitation values. 

 

Methods 

 

Evaluation coefficients 

SK NEXRAD SKlm 

Oct. 13, 

2002 

Mean 63.7 73.43 60.95 

SDV 5.84 19.14 16.52 

EE 0.10 -0.26 0.65 
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xzhang.pbworks.com 



 



 



Thank you for your 
attention! 



JOHN BATTLES 

 



Estimating uncertainty in forest biomass: 
 What exactly should we be reporting?  

QUEST Workshop –LTER ASM 2012 
John Battles 
Hubbard Brook 

Fig. 2 in  Zapata-Cuartas et al. 2012.  
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Sources of uncertainty in forest carbon estimates 

Measurement 
 e.g., diameter and height measurements (tree) 
  species (tree) 
  density (plot)  
 
 
Biomass transfer functions (tree level) 
 e.g., allometric equations, volume equations, wood density estimates 
 
 
Sampling error (class level) 
 error when plots in a class are aggregated to get central  
 tendencies (e.g., average to get mean value) 
 
 
Model selection (tree level)  
 related to transfer function 
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Attention has focused on two aspects: 
 
1. The statistics around the transfer function where tree measurements 
are used to calculate mass.  
 
 
 
 

2. Propagating uncertainty as we scale up from 
trees to plots to stands to forests.  



Zapata-Cuartas et al. 2012. Forest Ecology and 
Management 277:173–179 

Many ideas on how to best develop transfer functions. 
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Methods for uncertainty assessment 

Analytical error propagation  
 e.g., Taylor expansions 
 
 
Monte Carlo simulation 
 
 
Hierarchical analysis 
 e.g., Bayesian state space model   
 Nested likelihood functions 
 
 
Ad hoc approaches  
 e.g., various forest offset/carbon accounting protocols 
 
None   
 



Back to the question: What should we be reporting? 
 
 
 1. Science 
    Leave to peer review process with expectation uncertainty 
  will be addressed. 
 
 2. What about resource managers?  
  e.g., National Forest and National Parks now required to 
  monitor forest carbon pools.  
 
 3. What about carbon/GHG accounting protocols in states/regions? 
  National standards and international standards 
  
 4.  What about remote sensing approaches calibrated with  
  biometric results?  
  
 
  



MARK GREEN 



Flux
from

 a point

Concentration
Discharge

Tim
e Step/

Sam
pling Schem

e

Stage

Rating Curve

Grab Sam
ples

Accuracy

Precision

quality of Q m
easurem

ents

n of Q m
easurem

ents

Representative

Sam
pling

Lab stuff

sam
pling

protocolsm
odel

selection

serial autcorrelation

Discharge

M
easurem

ents

Interpolation m
odel

other

variables





RUTH YANAI 

 



Sources of Uncertainty in Soil Nutrient Contents 

Sampling Uncertainty Analytical Uncertainty 



Nitrogen in the Forest Floor 
Hubbard Brook Experimental Forest 

The change is insignificant (P = 0.84). 
The uncertainty is 22 kg/ha/yr. 



We can’t detect a difference of 1000 kg N/ha in the mineral soil… 

How should we estimate the uncertainty in change over time in soil N? 



JEFF TAYLOR 



A National Observatory: 20 Eco-Climatic Domains 

49 jtaylor@neoninc.org 



Terrestrial Measurements 

jtaylor@neoninc.org 50 



NEON Data Products 

jtaylor@neoninc.org 51 

584 level 1 data products 

117 level 4 data products 



52 jtaylor@neoninc.org 

Challenges 

• Coordinating Standardized Approaches 

 (Observer Bias) 

• Combining Uncertainties Across Scales 

• Metadata 

• Reprocessing 



The National Ecological Observatory Network is a project sponsored by the National Science 
Foundation and managed under cooperative agreement by NEON Inc. 

 

jtaylor@neoninc.org 
53 

www.neoninc.org 
 

jtaylor@neoninc.org 
 

http://www.neoninc.org/
mailto:hloescher@neoninc.org


CRAIG SEE 



Why gap filling? 

Credit: Odonfiction.wordpress.com 

Credit: Don Buso 



What do you do? 

• Sometimes its not important (finding mean) 

• Sometimes we need a continuous records 
(calculating pools, fluxes) 

• Often a reasonable estimate can be made 
based on other available data 



Gap filling (imputation) methods 

• Use of historical averages 

• Bayesian Bootstrapping 

• Expectation-maximization algorithm 

• Use neighboring values 

– Direct substitution 

– Regression 

 
All gap filling methods introduce 
new error into the final total!      



Streamflow gaps at Wakayama 
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Eiji Matsuzaki 



Precipitation gaps at Sevilleta 
Volume and chemistry measurements taken from 20 
collectors across SEV from 1989-1995. 

How do we incorporate “gap uncertainty” into annual 
nitrate deposition estimates? 



Statistics 

• Stepwise regressions using neighboring gauges as 
predictor variables 

• 68.2% PI  

• Relative errors add             

0

20

40

60

80

100

120
N

it
ra

te
 (

m
g/

m
2)

 
Gauge 2E Annual Nitrate Deposition 

1989      1990      1991      1992      1993     1994       1995 



CARRIE ROSE LEVINE 



Statistical Approaches 

We used certain data analysis methods depending on the available data (pg. 7).  

Model Type Time Series Multiple Sites 

Repeated measures mixed 

effects model  
X X 

Detectable difference 

analysis 
X 

Mann Kendall trends test 

and General Linear Model 
X 

Repeated measures mixed effects model: a generalized linear model that can include 

random as well as fixed effects. Time series within each site treated as a repeated 

measure, and random subsamples of sites were selected to generate hypothetical 

sampling schemes.  

Detectable difference analysis: describes the ability to detect significant changes in a 

future survey. The input variables include the sample size and standard deviation of the 

original survey and an alpha and power level.  

Mann Kendall trends test and General Linear Model: Mann Kendall test was used to 

assess trends in time series based on the Kendall rank correlation. When sampling took 

place throughout the year and seasonal trends were present, we used a Seasonal Mann 

Kendall trend test. General linear regression and the standard error of the were used to 

assess slope and the uncertainty in trends  



Model estimate and model 

standard error of long-

term average 

concentrations of SO4 (mg 

L-1) based on a repeated-

measures mixed-effects 

model using 50 random 

iterations for each 

simulated subsample size. 

Open symbols show 

models that reduced the 

number of lakes sampled, 

and red symbols show 

models that reduce the 

number of months 

sampled per year for all 

lakes.  


