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Abstract.  As regional and global scales become more important to ecologists, methods
must be developed for the application of existing fine-scale knowledge to predict coarser-
scale ecosystem properties. This generally involves some form of model in which fine-scale
components are aggregated. This aggregation is necessary to avoid the cumulative error
associated with the estimation of a large number of parameters. However, aggregation can
itself produce errors that arise because of the variation among the aggregated components.
The statistical expectation operator can be used as a rigorous method for translating fine-
scale relationships to coarser scales without aggregation errors. Unfortunately this method
is too cumbersome to be applied in most cases, and alternative methods must be used.
These alternative methods are typically partial corrections for the variation in only a few
of the fine-scale attributes. Therefore, for these methods to be effective, the attributes that
are the most severe sources of error must be identified a priori. We present a procedure
for making these identifications based on a Monte Carlo sampling of the fine-scale attributes.
We then present four methods of translating fine-scale knowledge so it can be applied at
coarser scales: (1) partial transformations using the expectation operator, (2) moment
expansions, (3) partitioning, and (4) calibration. These methods should make it possible
to apply the vast store of fine-scale ecological knowledge to model coarser-scale attributes

of ecosystems.
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ing; error propagation; lumped models; model aggregation; scale corrections; scaling; scaling error;

transmutation.

INTRODUCTION

The focus of ecological research is expanding from
relatively small plots of land to large landscapes and
regions, and has now grown to include the ecology of
the globe as a whole. However, these regional and glob-
al systems are much larger than those from which basic
knowledge of ecological processes is generally derived.

! Manuscript received 2 February 1990; revised 21 Feb-
ruary 1991; accepted 1 May 1991.

? Present address: Department of Environmental Sciences,
Clark Hall, University of Virginia, Charlottesville, Virginia
22903 USA.

The ability to test that knowledge through experimen-
tal manipulations is also limited to much smaller sys-
tems. If this knowledge gained and tested on small
systems is to be applied to larger ones, rules must be
found by which the fine-scale information (e.g., eco-
physiology) can be scaled and applied to coarser-scale
phenomena (e.g., global carbon balance).

This scaling can be accomplished by modeling the
interactions among fine-scale components to predict
coarser-scale properties of the aggregate. For example,
interactions among individual plants (fine scale) might
be modeled to predict the behavior of forests (coarse
scale). However, there is a limit to the amount of re-
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duction in scale that can be incorporated in a model.
Incorporating interactions among many components
is generally not possible simply because of the large
number of interactions involved (Beven 1989). For
example, it would be impossible to simulate photo-
synthesis for every leaf within a forest to make pre-
dictions of forest productivity. Yet the ability to apply
the knowledge gained by studying fine-scale compo-
nents (like individual leaves) to predict coarse-scale
phenomena (like forest productivity) is extremely de-
sirable.

Because of the impracticality of handling large num-
bers of fine-scale components individually, they are
generally lumped into an aggregated component and
treated collectively. For example, the leaves in a can-
opy might be lumped and treated as a single “big leaf”
(e.g., Sinclairet al. 1976, Rastetter et al. 1991) or whole
plants lumped to represent regional vegetation cover
(e.g., Sellers et al. 1989, Raich et al. 1991). The fine-
scale equations are often applied directly, or with mi-
nor changes, to describe the properties of this coarse-
scale aggregate. The problem with this approach is that
the aggregate does not generally behave the same way
as the fine-scale components from which it is consti-
tuted (O’Neill 1979); the “big leaf”” may be inaccurately
modeled with the same equations that describe the
behavior of the individual leaves within the canopy.
However, can the information contained in the fine-
scale equations be translated so it can be applied to
the aggregate?

Several authors have investigated errors associated
with this translation. In general, the fine-scale com-
ponents have high-frequency, transient behaviors that
are damped in the aggregate (Caughley 1982, Cale and
Odell 1980). If the fine-scale equations are used to
model aggregate behavior, the model may be incon-
sistent with direct measurements of the aggregate on
short time scales (Cale and O’Neill 1988). Similarly,
variation among fine-scale components is subsumed
in the aggregate. This subsuming of variance can pro-
duce error if the fine-scale equations are applied di-
rectly to the aggregate (O’Neill 1979). Thus, a coarse-
scale model, assembled from fine-scale relationships,
can be inaccurate even when the underlying, fine-scale
processes are well understood and can themselves be
adequately modeled. However, this loss of accuracy
introduced by aggregation must be balanced against a
loss in precision through the accumulation of errors
associated with the estimation of a large number of
parameters in complex, non-aggregated models (O’Neill
1973).

Not all aggregations produce errors. No error will
result from the aggregation of components with only
linear properties. Components with nonlinear prop-
erties can also be aggregated without error if the non-
linearity is only in the interactions among the aggre-
gated components themselves and if the relationships
of all aggregated components to the environment out-
side the aggregate are linear and identical (Cale et al.
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1983). Similarly, no aggregation error will result if the
attributes of the components being aggregated main-
tain a constant proportionality (Cale et al. 1983). Ag-
gregation errors can be minimized if the property being
scaled is highly correlated among the aggregated com-
ponents (Bartell et al. 1988), if the time constants of
the aggregated components are similar (O’Neill and
Rust 1979, Gardner et al. 1982), or if a very large
component is aggregated with a very small one (O’Neill
and Rust 1979). Aggregation error tends to be less
problematic if the aggregated components perform par-
allel functions (e.g., leaves in a canopy) rather than
interact in series (e.g., populations along a trophic chain,
Gardner et al. 1982).

Our first goal in this paper is to convey an under-
standing of what causes the aggregation problem. We
relate the aggregation problem to the ‘“fallacy of the
averages” (Wagner 1969: 658) and demonstrate that
rigorous analytical solutions to the problem are not
always desirable because they can lead to excessively
complex equations that are difficult to use and are heu-
ristically unenlightening. Our analysis is confined to
aggregations that lump fine-scale components perform-
ing similar, parallel functions (e.g., aggregating leaves
within a canopy or individuals within a population).
Several individual sources of error, each arising from
different properties of these fine-scale components, can
simultaneously contribute to the aggregation problem.
Correction for all of these sources is usually impossible,
but corrections for a few of the most serious sources
can substantially reduce error. Our second goal is to
present a procedure for identifying these most severe
sources of aggregation error. Our third goal is to present
several alternative procedures for reducing aggregation
error. No one procedure will be best in all cases; a
choice among them will usually depend upon the prac-
ticality of their application rather than their effective-
ness at reducing aggregation error. We conclude with
an evaluation of the effectiveness of these procedures
for a particular example.

THE NATURE OF THE AGGREGATION PROBLEM

Aggregations are made to reduce model complexity.
Reduced complexity may be desirable for purely heu-
ristic reasons; simple models are usually easier to un-
derstand than more complex ones. More importantly,
reduced complexity may be necessary because of an
accumulation of the error associated with the estima-
tion of parameters for each of a large number of the
model components (O’Neill 1973). The error associ-
ated with each of these parameters will propagate
through the model and combine, often multiplicative-
ly, with the error associated with other parameters.
This error will be especially large if the parameters are
estimated independently because such an estimation
does not account for the covariances among parame-
ters. Estimation of all of the parameters simultaneously
through a multivariate calibration will account for this
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covariance and can reduce the propagated error sub-
stantially (Hornberger and Cosby 1985). At a mini-
mum, the error in the model as a whole will equal the
cumulative propagated error from all of the parame-
ters. Therefore very complex models with many pa-
rameters tend to lack precision. One way to enhance
precision is to reduce the number of model compo-
nents, thereby reducing the number of parameters that
need to be estimated. Reducing the number of model
components involves some form of aggregation.

Errors associated with this aggregation are often
overlooked. These errors arise when the aggregated
components are inappropriately described with equa-
tions and parameters derived for fine-scale compo-
nents. This inappropriate application of fine-scale re-
lationships to aggregated components can be equated
to the “fallacy of the averages” (Wagner 1969), a fallacy
that has widespread occurrence in the environmental
sciences (Templeton and Lawlor 1981, Beven 1989).

The problem is easily visualized for the case where
only two fine-scale components are being aggregated
and where the fine-scale function relating some attrib-
ute of these components (f{X)) to a variable X is con-
cave in only one direction (i.e., either concave upward
or concave downward throughout the range of X). One
coarse-scale relationship for this system would be a
function relating the mean attribute of the combined
components (i.e., f= [f{x,) + Ax,))/2) to the mean of
the two variable values (i.e., X = [x, + x,]/2).

As a first-order approximation, the mean of the two
variables could be used in the ﬁne-scalg function to
estimate the coarse-scale attribute (i.e., f = (%)) used
as an estimate of /). If the resulting estimate is plotted
on the same graph as the fine-scale equation, the point
(X, f) obviously lies along the arc of the fine-scale func-
tion itself (Fig. 1). However, if the two function values
are themselves averaged and plotted on the graph, the
point (%, /) lies along the straight line connecting the
original two points on the function (i.e., connecting the
points [x,, f(x,)] and [x,, f(x,)]). The point represent-
ing the coarse-scale relationship (%, f) always lies on
the concave side of the fine-scale function. The dis-
crepancy between /= f{X) and fis the aggregation error
for the estimate (Fig. 1).

Two important results are apparent from this graph-
ical analysis. First, aggregation error will increase as
the depth of the concavity in the fine-scale function
increases. Thus, aggregation error will tend to be severe
for deeply curved functions but negligible for nearly
flat ones. Second, aggregation error will increase as the
spread between the two operand values (x, and x,)
widens, that is, as the variance of the operands in-
creases. As long as the function is concave in only one
direction throughout the range of X, both of these re-
sults will generalize to the case where there are > 2 fine-
scale components being aggregated, although this case
is more difficult to visualize graphically.

Because the coarse-scale values always fall within
the concavity of the fine-scale function, the relationship
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Fi1G. 1.  Error resulting from the aggregation of two fine-
scale components. The heavy line represents the relationship
between some variable (X) and some attribute (f(X)) of two
independent, fine-scale components. The two fine-scale com-
ponents differ from one another in their respective values of
X. Individually, the attributes for the two components are
[fix,) and fix,), respectively. Together, their mean attribute is
. However, placing the mean value of X in the fine-scale
relationship yields a biased estimate £ The error tends to
increase as the distance between x, and x, increases (i.e., the
variance) and as the concavity of the fine-scale relationship
deepens.

for coarse-scale attributes will tend to be flatter than
the fine-scale relationship. In most cases, this tendency
toward flattening will also be true for fine-scale func-
tions that are concave upward for parts of their range
and downward for others (e.g., sigmoid curves), al-
though the effect will be small near the inflection points
where concavity changes. To incorporate this flattening
in the coarse-scale functions, the form of the fine-scale
function must be transformed during the aggregation
process (called “transmutation” by O’Neill [1979]). This
transformation is usually more than just a simple change
in the parameter values; the form of the equation itself
must change.

One way to transform fine-scale functions into coarse-
scale functions is to quantify the variation among fine-
scale components using a probability density function
(see also Cale 1988) and use the statistical expectation
operator to derive the expected behavior of the aggre-
gate (E[f{X)], Yeh 1973: 145).

F=E[f(X)] = J:w SX)p(x) dx, M

where Fis the aggregated, coarse-scale relationship (e.g.,
a full-canopy photosynthesis equation), {X) is a fine-
scale relationship (e.g., individual-leaf photosynthesis
equation), X is some variable in the fine-scale rela-
tionship that varies among the individual components
(e.g., irradiance), and p(X) is the probability density
function describing how X is distributed among the
fine-scale components.

Because Eq. 1 is a definite integral, the variable X
does not appear in the aggregated, coarse-scale function
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(F). Instead, it is replaced by the parameters in p(X),
which describe the distribution of X. There are usually
several parameters in p(X); consequently, the coarse-
scale function will tend to have more parameters than
the original, fine-scale function. The propagated error
associated with estimating these additional parameters
can be substantially smaller than the propagated error
associated with independent estimates of X for each of
the fine-scale components, especially if there are a large
number of X values to estimate and the variability
among these X values is large.

Normally there is >1 property that varies among
the fine-scale components (e.g., irradiance, chlorophyll
content, vapor pressure). The aggregation error in this
case is equal to E[f(X, X,, X5, . . )] — fE[X ], E[X2],
E[X), .. .), where the X are the various properties that
vary among fine-scale components (not individual val-
ues of a single property). The expectation procedure,
applied sequentially for all sources of variation, would
constitute a “perfect aggregation” (Iwasa et al. 1987,
1989) or a “strict aggregation” (Hirata and Ulanowicz
1986) because it introduces no error. To apply the
procedure, all forms of variability among the compo-
nents being aggregated must be fully characterized with
a joint, multivariate probability density function (i.e.,
o[ X1, X5, X, . . .]) and incorporated into the aggregated
equations.

A full characterization of all forms of variability is
usually not possible, and evaluation of the integral can
be difficult, making a full implementation of the pro-
cedure impractical in many instances. As we point out
in the next section, there are also analytical reasons
why a full implementation of this procedure is im-
practical. Nevertheless, partial implementations are of-
ten useful, and the procedure does provide a conve-
nient theoretical basis with which to illustrate the
consequences of aggregation and from which to com-
pare other aggregation procedures.

AN EXAMPLE OF AGGREGATION

To illustrate the consequences of aggregation, we de-
velop corrected photosynthesis equations for an ide-
alized canopy in which the leaves are oriented hori-
zontally and distributed homogeneously throughout the
canopy. We also assume that light hits this canopy
vertically and that the leaves are small enough that the
extinction of light down through the canopy is closely
approximated by a continuous decay function. Indi-
vidual leaves are assumed to vary only in the amount
of light they intercept and in the efficiency with which
they use that light. These photosynthesis equations will
be used in later sections to illustrate various strategies
for developing coarse-scale models and to illustrate the
errors associated with these strategies. The equations
are therefore developed in some detail.

Assume that the rate of photosynthesis (CO, uptake)
per unit area for individual leaves can be modeled as
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a hyperbolic function of irradiance (Cosby 1984,
Landsberg 1986: 80):

p= P,E,I

TPt B @

where P is the photosynthetic rate per unit area of leaf,
P,, is the maximum photosynthetic rate per unit area
of leaf, E, is the light-use efficiency, and [ is the irra-
diance (photosynthetic photon flux density) on the leaf.
To calculate the average photosynthetic rate per unit
of leaf area for the whole canopy (P), this equation
could be applied to all the leaves in the canopy and
the results averaged. However, to make this calcula-
tion, the values of I and E, would first need to be
estimated for each leaf. Not only would these esti-
mations be tedious, the cumulative error associated
with them could be large.

Alternatively, the leaves could be sampled to esti-
mate mean values for  and E, and these values could
be used in the fine-scale equation (Eq. 2) as a first-order
approximation of P:

_  P,E,I

“ P, + E,T
where the u subscript indicates that the estimate is
uncorrected, that is, that the form of the equation is
identical to that of the fine-scale equation (Eq. 2).

To correct for the variability in irradiance, we need
a probability distribution for I on individual leaves.
This distribution would be difficult to estimate, so we
make the simplifying assumption that the canopy can
be partitioned into thin layers where the variability in
irradiance is small. The distribution of irradiance on
these thin layers will depend upon the distribution of
leaf area in the canopy. We assume a canopy in which
the cumulative overlying leaf area per unit of ground
surface area increases linearly and continuously from
0, at the top of the canopy, to L,, at the bottom of the
canopy. We further assume that the errors associated
with this continuous approximation to a discrete dis-
tribution are negligible. The cumulative overlying leaf
area per unit of ground surface area at a randomly
selected level in the canopy will therefore take on any
value between 0 and L, with equal probability. The
probability density function for cumulative, overlying
leaf area per unit of ground surface area is therefore:

3

1
o(L) = I

0

for0O <L <L,

=0 @
where L is the cumulative, overlying leaf area per unit
of ground surface area above a randomly selected level
in the canopy.
Next we assume that the irradiance within the can-
opy is distributed according to Beer’s Law (Waring and
Schlesinger 1985: 12):

elsewhere,

I=Ie* ™ for0 <L <L, ®)
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where I is the irradiance at the level in the canopy
where the cumulative, overlying leaf area per unit of
ground surface area equals L, I, is the irradiance at the
top of the canopy, and k is the Beer’s Law extinction
coefficient.

Because of the functional relationship between I and
L (Eq. 5), the probability density function for I can be
calculated from the probability density function for L
as follows (Yeh 1973: 103):

(L)
o) = 2=
dar
dL
=1 for I;e* o < I < I,
kLol r
=0 elsewhere. 6)

Finally, substituting Egs. 2 and 6 into the expectation
operator (Eq. 1), the mean canopy photosynthetic rate
per unit of leaf area, corrected for variation in irradi-
ance (P,), can be calculated as follows:

_ P, P, + E,I,
=P | Pt Eolr | 7
Pr=qz; {Pm n EOITe—"LO} ™

This equation is similar to one derived by France and
Thornley (1984) for crop canopies.

The variability among leaves can also come from
sources other than incident light (such as nitrogen con-
tent or different species). This variability can appear
in several places in the equations. It might involve
differences in the independent variables, such as irra-
diance in the example above. Additional variability
might also arise due to differences in what would nor-
mally be viewed as constant model parameters, such
as the light-use efficiency (E,). In this context, E, is a
spatially distributed variable. Here we assume that the
light-use efficiencies among leaves are distributed in-
dependently of the irradiance and uniformly between
the values of E,, and E,, (i.e., p(E,) = 1/AE,, where
AE, = Ey, — E,,). Following the procedure we used
for irradiance, the mean photosynthetic (CO, uptake)
rate per unit of leaf area, corrected for E(Py) is:

. 2 P E

P.=P, —
£ IAE, |P, + Eg 1|’

where I is the irradiance at the level in the canopy
where P; is calculated.

Finally, we simultaneously correct for both irradi-
ance and light-use efficiency. Because we have assumed
that I and E, are distributed independently of one
another, this correction can be made using the expec-
tation operator (Eq. 1) with either Eq. 7 and p(E,) or
Eq. 8 and p(J). The resulting mean photosynthetic rate
per unit of leaf area is:
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p. = Dm an P, + EyI,
B KLy AE, I~ \P,, + Eo I,

P, 1 P, + Ey I e
P, + EyIe ¥

P, + Eol,
+ Egy In|——m T Loalr
02 n(P,,, + Eopl, e o

P, + Eql
— Eg In|——z T Zolr L
o n(P,,, + Eglye— ©)

For the sake of illustration, we assume that the sim-
plifying assumptions we had to make to arrive at this
equation contribute negligibly to the error. We there-
fore assume that this equation is fully corrected.

The particular forms of the three corrections (Egs.
7, 8, and 9) are less important to our purposes than
their qualitative relation to the fine-scale equation from
which they were derived (Eq. 2). First, to make the
transformations, a complete characterization of the
variability among the fine-scale components was need-
ed (i.e., p(I) and p(E,)). As mentioned above, charac-
terization of the variability among fine-scale compo-
nents can be difficult and may require prohibitively
intense sampling. To make the derivations illustrated
above, we had to make simplifying assumptions to
overcome this problem. Second, with each successive
correction (Eq. 3 to Egs. 7 and 8 to Eq. 9), the rela-
tionship became more complex, gained parameters,
and was heuristically more difficult to grasp. Third, the
uncorrected (Eq. 3) and partially corrected (Egs. 7 and
8) relationships are biased estimators of the fully cor-
rected relationship (Eq. 9). In particular, the partially
corrected relationships lie on the concave side of the
uncorrected relationship, and the fully corrected rela-
tionship lies on the concave side of both the uncor-
rected and partially corrected relationships (Fig. 2).

To remove all aggregation error, transformations
would have to be made to account for all forms of
variability. For example, corrections might also be made
for the temporal variation in I, to calculate a mean
daily photosynthetic rate (e.g., Gross 1982), or correc-
tions might be made for lateral variation in leaf area
(spatial variations in L,). However, the increased com-
plexity with each successive transformation will make
this more and more difficult, as should be obvious from
an examination of the successive increase in complex-
ity from Eq. 3 to Egs. 7 and 8 to Eq. 9.

The problem becomes even worse when all the pro-
cesses occurring in an ecosystem are considered, each
of which must be corrected for all forms of variability.
It would be impossible to get an adequate character-
ization of all these forms of variability (i.e., p for each).
Even if it were possible, the derivation of the corrected
relationships might prove tedious and unenlightening.

Nevertheless, correcting for some of the sources of
variability is usually worthwhile. For example, Egs. 7
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Fic. 2. Estimates of mean canopy photosynthesis (CO,
uptake) at varying top-of-the-canopy irradiance (photosyn-
thetic photon flux density) based on three transformations of
the fine-scale relationship. The uncorrected curve is for the
uncorrected function (Eq. 3). The remaining curves are cor-
rections for irradiance (Eq.7:1), light-use efficiency (Eq. 8:E,),
and for both (i.e., fully corrected, Eq. 9). The curves are for
a canopy with a leaf area index (L,) = 6.

and 8 are less-biased estimators of canopy photosyn-
thesis than is Eq. 3. Corrections for other sources of
variability might be inconsequential. Among the many
possible corrections that could be made, which will be
most profitable? In the following section, we examine
ways to rank the relative contributions of various
sources of aggregation error to help guide such deci-
sions.

RANKING AGGREGATION ERROR FROM
VARIOUS SOURCES

Ranking the relative contributions of the fine-scale
variables to aggregation error requires that these con-
tributions be quantified. One way to make this quan-
tification is to use the corrections based directly on the
expectation operator. Each of the partial corrections
for individual variables (e.g., Eqs. 7 and 8) can be
compared to the full (or at least most complete) cor-
rection for all variables (e.g., Eq. 9). Assuming that the
improved accuracy resulting from the corrections is
not offset by a decrease in precision resulting from
additional parameters, the partial correction that most
closely matches the full correction will be the most
profitable one to employ. However, this approach can
only be implemented if the expectation operator can
be integrated for the full array of variables. These in-
tegrations are often difficult. In any case, it would be
convenient to know which corrections will be most
beneficial before having to go through the effort of
actually making the corrections.

Simpler approaches to this quantification are ham-
pered by the nonlinearity of the fine-scale equation.
Simple analytical approaches can be devised for par-
ticular classes of nonlinear equations, but we know of
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none that are general for all nonlinear equations.
Therefore, a ranking of the relative contributions of
the variables to the aggregation error must rely on an
intuitive understanding of the aggregation problem and
on less rigorous, non-analytical approaches to the
quantification.

A simple qualitative assessment of the contributions
to aggregation error can be made using the graphical
analysis employed earlier (Fig. 1). By plotting the fine-
scale function against each variable, the potential for
error can at least be visualized. Variables for which
these plots are deeply concave will tend to be associated
with large portions of the aggregation error. However,
caution must be taken with this approach because it is
not only the range of variability in the variables that
is important; the distributions within these ranges are
also important. It is difficult to assess the ramifications
of these distributions from a simple graph. Neverthe-
less, this graphical analysis is a good first step for as-
sessing aggregation error and will thus help guide fur-
ther analysis.

One important piece of information that can be de-
termined by plotting the fine-scale functions against
each of the variables is the direction of aggregation
error. This can be an important factor to consider be-
fore making corrections. For example, consider the
function

X, =X -Y+1, (10)

where both X and Y vary uniformly between —0.5 and
+0.5. From plots of this function against X and Y (Fig.
3), it is easy to see that errors associated with the two
variables are in opposite directions. The function is
concave upward with respect to X, resulting in a neg-
ative error. It is concave downward with respect to Y,
resulting in a positive error. Because the errors are in
opposite directions, they will tend to cancel each other.
Thus, a correction for only one of the variables can
actually make the overall error worse.

This result is easily confirmed using the expectation
operator to make the actual corrections. The correc-
tions for X and Y, respectively, are:

- 13
_- = 2
F.(Y) B Y (11)
and
- 11
F(X)= - + X2 (12)

Using the respective means (X = 0 and y = 0) to generate
estimates of the aggregated value of the function, the
uncorrected equation (Eq. 10) produces an estimate of
1, the correction for X (Eq. 11) produces an estimate
of 13/12, and the correction for Y (Eq. 12) produces
an estimate of 11/12. The true, fully corrected value
is E[flX, Y)] = 1. Because the errors associated with
the two variables exactly canceled each other, the un-
corrected estimate is better than either of the two cor-
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Fic. 3. An assessment of the aggregation error for variables X (left) and Y (right) for the fine-scale equation AX, V) =X
— Y? + 1. The error associated with X is negative while that for Y is positive. Assuming that X and Y are uniformly distributed
between —0.5 and +0.5, the aggregation error for each must lie somewhere within the arrows in the respective graphs.

rected ones. Therefore, care must be taken to ensure
that corrections for one variable do not enhance the
manifestation of errors associated with other variables.

More quantitative assessments of aggregation error
can be made using Monte Carlo simulations. The aim
of these simulations is to sample the range of fine-scale
responses to the variability in the fine-scale variables.
To do this, sets of fine-scale variables would be re-
peatedly generated at random from their respective
distributions and used in the fine-scale function. The
mean of this sample of fine-scale responses is an esti-
mate of the value of the aggregated, coarse-scale re-
sponse. Sequential estimates of this mean will converge
to a fixed value once the sample size is large enough
(see example below, Fig. 4). An estimate of the fully
corrected relationship can be made by sampling with
random values for all variables simultaneously. An
estimate of the partial correction for any one variable
can be made by sampling with random values for only
that variable and leaving the rest fixed at their respec-
tive mean values. Similarly, higher order, partial cor-
rections for =2 variables can be estimated by allowing
only them to vary in the sampling. An assessment of
the best partial correction can then be made by com-
paring the estimates of each of the partial corrections
to the estimate of the full correction. Again, assuming
that the propagated error due to additional parameters
is not prohibitive, the partial correction that most
closely matches the full correction will be the most
profitable one to employ.

To illustrate this, consider the idealized canopy dis-
cussed above (see An example of aggregation) with I,
= 1000 ymol-m~2-s~!, maximum photosynthetic rate
P, =10 pmol-m=2-s7!, k = 0.5 m?/m?, light-use effi-
ciency in CO, uptake E, distributed uniformly between
E, =0.018 and E,, = 0.065 umol/umol, and I dis-
tributed according to Eq. 6. When the sample means
are plotted for this example (Fig. 4), they converge only
after a sample size of ~200. With a leaf area index (Lo)

A) Leaf Area Index=1

umol-m2.s1)
N
[}
1

Fully Corrected

I Corrected

Eq Corrected
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1 L L
200 300 400
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6.5 B) Leaf Area Index=6

Fully Corrected

I Corrected

4 1
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L i Il
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Fi. 4. Estimated mean canopy photosynthesis (CO, up-
take) at 1000 umol/m? top-of-the-canopy irradiance (photo-
synthetic photon flux density) based on a Monte Carlo sam-
pling of the variables in the fine-scale photosynthesis equation
(Eq. 2). Values for within-canopy irradiance (1) and light-use
efficiency (E,) were generated from their respective proba-
bility density functions. For the fully corrected curve, both 7
and E, varied in the sampling. For the I-corrected curve, I
varied and E, was set at its mean value. For the E o-corrected
curve, E, varied and I was set at its mean value.

500

Estimated Photosynthesis (umol-m2s') Estimated Photosynthesis (
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25

Uncorrected

I Corrected

Percent Error

Leaf Area Index

Fic. 5. Error as a percentage of the fully corrected pho-
tosynthesis equation (Eq. 9) for the uncorrected (Eq. 3), the
irradiance (I)-corrected (Eq. 7), and the light-use efficiency
(E,)-corrected (Eq. 8) equations under varying values of the
leaf area index. Evaluations were made at a top-of-the-canopy
irradiance of 1000 pmol/m?2.

of 1 (Fig. 4A), the estimate of the correction for E,
matches the estimate of the full correction more closely
than the correction for I; thus corrections for E, would
be expected to work better in this case. However, when
the leaf area index is 6 (Fig. 4B), corrections for ] appear
to be the more effective.

This shift in the relative importance of the two vari-
ables is explained by changes in the variability of light
within the canopy as total leafarea changes. Variability
among fine-scale components is one of the major fac-
tors contributing to aggregation error. The variability
in light intensity within a canopy increases as the can-
opy thickens (Eq. 5). This increase in variability means
that aggregation error associated with 7 in Eqs. 3 and
8 will increase as L, increases. On the other hand,
variability in E, is independent of L,, so aggregation
error associated with E, should be less sensitive to
changes in L,. (The small changes in aggregation error
associated with E, are due to changes in the concavity
Eq. 3 as L, and therefore I, changes.)

These results can be confirmed using the actual cor-
rections based on the expectation operator (Egs. 7, 8,
and 9). In canopies with a leaf area index less than =2,
corrections for E, are more effective than corrections
for I (Fig. 5). In canopies with a leaf area index >3,
corrections for I are more effective than corrections for
E,. This confirms that most of the aggregation error is
associated with E, in thin canopies, and with 7 in thick
canopies. It is also apparent from this analysis that the
overall aggregation error increases as the leafarea index
increases.

For the example discussed above, the two variables
entered into the fine-scale equation (Eq. 2) in exactly
the same form. That is, Eq. 2 is a hyperbolic function
of both I and E,. In fact, everywhere either of these
variables enters into the equation, it is multiplied by
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the other. Because of this symmetry, their relative con-
tributions to the aggregation error can be attributed to
differences in the shapes of their respective probability
distributions; if I and E, had identical distributions,
their respective contributions to the aggregation error
would be identical.

This degree of symmetry will not generally be the
case. Variables are likely to enter into the fine-scale
equation in different forms. For example, the fine-scale
equation might be hyperbolic with respect to one vari-
able and logarithmic with respect to the other. In the
general case, the relative contributions of the variables
to the aggregation error will depend on both their prob-
ability distributions and on the form in which they
enter into the fine-scale equation. As an extreme ex-
ample, if a fine-scale equation of two variables is linear
with respect to one of the variables and nonlinear with
respect to the other, all of the aggregation error will be
attributable to the nonlinear variable even if the two
probability distributions are identical. Regardless of
the degree of symmetry among variables, the methods
presented in this paper are applicable.

USING FINE-SCALE RELATIONSHIPS TO
BuiLD AGGREGATED, COARSE-SCALE MODELS

From the example of aggregation discussed above,
it is clear that there will be errors associated with the
application of fine-scale equations to describe coarse-
scale phenomena. In other contexts, errors (e.g., rea-
sonable sampling errors) are generally acceptable as
long as they are not overly large. Will a similar ap-
proach work for aggregation? That is, short of perform-
ing the tedious transformations based on the expec-
tation operator, are there ways to reduce aggregation
errors that still yield reliable model predictions?

In this section we discuss four such means of reduc-
ing aggregation error: (1) partial transformations using
the expectation operator (Eq. 1) to correct for only the
most severe sources of aggregation error; (2) moment
expansions using a truncated Taylor series expansion
of the expectation operator to approximate partial
transformations; (3) partitioning of the coarse-scale ag-
gregate into a manageably small number of appropri-
ately chosen medium-scale components that are less
severely aggregated; and (4) calibration of the fine-scale
relationship to coarse-scale data. The equations de-
rived using these four techniques will be very different,
but their shapes are similar and approximate that of
Eq. 9 (Figs. 2, 6, and 7).

To illustrate these techniques, we again consider the
idealized canopy discussed above (see An example of
aggregation) in which only the irradiance (I) and light-
use efficiency (E,) vary among leaves. Again assume
that P,, = 10 umol-m~2-s~!, that £k = 0.5 m?/m?, and
that E, is distributed uniformly between E,, = 0.018
and E,, = 0.065 umol/umol. Given the leaf area index
(L) and the top-of-the-canopy irradiance ({;), the pho-
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Fig. 6. Estimates of mean canopy photosynthesis (CO,
uptake) at varying top-of-the-canopy irradiance (photosyn-
thetic photon flux density) based on four approximations to
the fully corrected equation (Eq. 9). The approximations are
derived from moments expansions (Eq. 14) for irradiance (0}
and light-use efficiency (E,), and from a partitioning (Eq. 18)
for I and E,. The curves are for a canopy with a leaf area
index (Ly) = 6.
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tosynthetic rate for this idealized canopy can be exactly
predicted from Eq. 9. Data were generated for L, values
of 1 and 6 m?/m? at 100 evenly spaced values of top-
of-the-canopy irradiance (1) ranging from 20 to 2000
pmol-m=2-s~!, Uncorrected data were also generated
at the same L, and I, values using Eq. 3 (Fig. 2). These
data sets were then used to rank the effectiveness of
the four correction procedures (Table 1).

This type of ranking is typically made using three
criteria. First, a model will rank highly if there is a
high correlation between the target data (in this case
data from Eq. 9) and model predictions (Draper and
Smith 1981). Correlation was of little use in this case
because all four techniques yield predictions that are
highly correlated with data generated using Eq. 9 (r >
0.999).

Second, a model will rank highly if the residuals are
serially uncorrelated and if there is no discernible re-
lationship between the residuals and other variables
(Box and Jenkins 1976, Draper and Smith 1981, Cosby
1984, Cosby and Hornberger 1984). This criterion was
of little use in this case because all four techniques
retain at least some of the aggregation error. Therefore,
in the absence of measurement error and other noise,
the residuals have a high positive serial correlation (r
> 0.99 for all models) and have a pattern that is clearly
related to I (Figs. 2, 6, and 7). In any real application,
this high serial correlation and the relation to I, are
likely to be hidden by noise in the data if the residuals
are small.

The third criterion is to evaluate the magnitude of
the residuals (Mallows 1973, Draper and Smith 1981).
For the idealized canopy the residuals were roughly
proportional to the predicted value of photosynthesis
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Fic. 7. Estimates of mean canopy photosynthesis (CO,
uptake) at varying top-of-the-canopy irradiance (photosyn-
thetic photon flux density) based on two calibrations to the
fully corrected equation (Eq. 9). The fine-scale equation (Eq.
2) was calibrated directly and was corrected for irradiance
(Eq. 7:1) before being calibrated. Inset is an expansion of the
relationship near a top-of-the-canopy irradiance of 1000 umol/mz2,
The curves are for a canopy with a leaf area index (L) = 6.

(Figs. 2 and 6). We therefore normalized the residuals
relative to photosynthesis by expressing them as a pro-
portion of the rate of photosynthesis where the residual
was measured ([P — P]/P). The mean of these relative
residuals squared is a measure of the overall goodness
of fit of the corrected equations throughout the range
of I'r. By taking the square root of this mean, the overall
error can be expressed as a proportion of the predicted
photosynthetic rate. If there were variability in P and
the models were unbiased (i.e., P = E[P]), the resulting
statistic would be identical to the standard error of the
relative residuals. We therefore call the statistic the
standard relative error (SRE):

SRE = (13)

where 13,~ is the estimated photosynthetic rate and P, is
the actual photosynthetic rate as calculated with Eq. 9
at each of the n (=100) values of I,.

Uncorrected estimates

As discussed in Ranking aggregation error. . ., above,
uncorrected (Eq. 3) and fully corrected (Eq. 9) predic-
tions of canopy photosynthesis differed less in the thin
canopy with a leaf area index (L,) of 1 than in the thick
canopy with an L, of 6 (Fig. 5). The SRE for the thinner
canopy was <3%, while that for the thicker canopy
was >18%. In the following discussion, we compare
residual errors for the four correction procedures to
these two values. Thus, the residual errors will be ex-
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TaBLeE 1. Standard relative errors (SRE) and percentage of uncorrected error remaining in estimates of canopy photosynthetic

rate, based on various aggregation procedures.

Leaf area index = 1

Leaf area index = 6

SRE % of SRE % of
Aggregation procedure (%) uncorrected (%) uncorrected
Uncorrected (Eq. 3) 2.59 100 18.38 100
Transformed
For irradiance (Eq. 7) 2.20 85 2.35 13
For light-use efficiency (Eq. 8) 0.38 15 15.40 84
Moment expansions (Eq. 14)
For irradiance through the
Second moment 2.20 85 1.39 8
Third moment 2.20 85 9.02 49
Fourth Moment 2.20 85 2.51 14
For light-use efficiency through the
Second moment 0.59 23 15.59 85
Third moment 0.59 23 15.59 85
Fourth moment 0.41 16 15.41 84
Partitioned
By irradiance (Eq. 18) 2.30 89 6.25 34
By light-use efficiency 1.03 40 16.23 88
Calibrated 0.82 32 3.29 18

pressed both as SREs and as percentages of the SREs
for the uncorrected estimates (i.e., 100 X [SRE-cor-
rected]/[SRE-uncorrected]).

Corrections based on partial transformations

As we have already discussed, partial corrections
using the expectation operator can substantially im-
prove estimates. Corrections for both I and E, im-
proved the estimates of mean canopy photosynthesis
regardless of the leaf area index (Table 1). With a leaf
area index of 1, corrections for E, (Eq. 8) reduced the
error to 15% of the uncorrected error (SRE = 0. 38%),
while corrections for I (Eq. 7) only reduced it to 85%
of the uncorrected error (SRE = 2.20%). On the other
hand, with a leaf area index of 6 (Fig. 2), correcting for
I decreased error to 13% of the uncorrected error (SRE
= 2.35%), while correcting for E, only decreased error
to 84% of the uncorrected error (SRE = 15.40%).

Moment expansions

Moment expansions are derived from a Taylor series
expansion of the fine-scale function in the expectation
operator (Eq. 1). They should not be confused with the
“method of moments” (Brunk 1975), which is a pa-
rameter estimation procedure. The moment expansion
described here is a means of transforming equations
from fine scale to coarse scale. Parameter estimation
is a completely different problem, which we discuss
briefly below.

If f{X) is expanded about the mean of X (u,), Eq. 1
can be rewritten in the following form:

=W pc-wy,  as

where fO(u,) is the i* derivative of f{X) with respect
to X evaluated at u, and E[(X — u,)7], called the i*
moment of X about u,, is the expected value of (X —
) (i.e., setting AX) = (X — u,) in Eq. 1). This same
expansion can be repeated sequentially for each vari-
able in the fine-scale equation. These additional ex-
pansions will result in a series of interactive terms in-
volving pairs of variables, then triplets and so forth.
For the case of only two variables, the first few terms
of the series are:

0,2 0% f (s, 1,)

X

2 adx?

0,20 f (ks 1)
2 g2

9 f (b, 1)
dx dy

ny = f(l"'xy /"'y) +
+

+ o

. + ... (15)
where ¢,2 and ¢,2 are the variances of X and Y (¢,2 =
E[{X — p}?D, oy, is the covariance between X and Y,
and the d/dx and 3/dy operators signify partial differ-
entiation with respect to X and Y.

The first term in the series is simply the fine-scale
function evaluated at the variable means. That is, it is
the uncorrected estimate (e.g., Eq. 3) of the aggregated
relationship. The remaining terms are corrections to
this estimate. This series will eventually converge to
the true value of F. However, the number of correction
terms required before the series converges to a reason-
able estimate of the aggregated relationship (F) will
depend upon the form of the fine-scale relationship
(f(X, Y)) and upon the joint distribution of X and Y
(o(X, Y)).
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TABLE 2. Means and moments about the means for irradiance and light-use efficiency used in moment expansions.
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Moment expansions are an application of a trun-
cated form of Egs. 14 or 15 to approximate the rigorous
transformations based on Eq. 1. These equations are
another way to express the expectation operator. How-
ever, they may be more useful expressions than Eq. 1
if the integration in Eq. 1 should prove to be overly
cumbersome but the derivatives of the fine-scale re-
lationship can be readily calculated. Eqs. 14 and 15
also have the advantage that the probability density
function, p(X, Y), need not be specified as long as the
moments of the distribution can be estimated by sam-
pling. For the case where the variables are indepen-
dently distributed, these moments can be estimated by
sampling the fine-scale variable (X) and estimating the
expected values of the powers of X

> &h
E[X4="—0 (16)
n
where E [X*] is the sample estimate of E[X*], and x;,
are the n sample values of x. The moments about the
mean can then be calculated from a binomial expan-
sion:

i—o \!

ElX - p=3 <k)(—x,)"£[Xk-'], (17)

where (¥) = k!/[(k — i)! i!] and % = E[X]. Alternatively,

the moments can be calculated from a known or as-
sumed probability density function (i.e., from p(X)).
We calculated the moments directly from p(1) and p(E )
(Table 2).

Because of the infinite number of terms in Eq. 15,
the moment expansion method can, in general, only
serve as an approximation to the partial transforma-
tions. Exceptions to this, of course, are polynomial
functions, where higher-order derivatives all equal zero
and the series therefore terminates after a finite number
of terms. Other exceptions would involve probability
density functions with higher order moments equal to
zero (e.g., a Gaussian distribution). In other cases, high-
er-order terms in the expansion may be small enough
that reasonable approximations to the coarse-scale re-
lationship can be made with only the first few terms
in the series.

To illustrate the moment expansion procedure, es-
timates for the mean canopy photosynthetic rates were
made using the second, third, and fourth moments
about the mean (i.e., the variance, skewness, and kur-
tosis) for both irradiance and light-use efficiency (Fig.
6, Table 1). Because we only corrected for one variable
at a time, interactive terms were not considered. As
with the partial transformations, corrections for either
source of variance improved estimates to some degree.
Corrections for irradiance only reduced errors to 85%
of the uncorrected error (SRE = 2.20%) in the canopy
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with a leaf area index of 1, but reduced it to 14% of
the uncorrected error (SRE = 2.51%) in the canopy
with a leaf area index of 6. Corrections for light-use
efficiency, on the other hand, worked better in the thin-
ner canopy than in the thicker one, reducing error to
16 and 84% of the uncorrected error, respectively (SRE
= 0.41 and 15.41%).

The major problem with this procedure is deter-
mining how many terms in the series must be included
before a reliable estimate is achieved. An examination
of the successive estimates for the moment expansions
for irradiance illustrates the problem. When the leaf
area index was 1, the series converged almost imme-
diately; the third and fourth moments contributed very
little to the estimate (Table 2). When the leaf area index
was 6, on the other hand, there was no evidence that
the estimates had converged. Indeed, the estimate in-
cluding only the second-moment term was better than
either of the two subsequent estimates. However, there
would be no way of knowing this unless the fully cor-
rected prediction were available.

Partitioning

An obvious way of reducing aggregation error is to
reduce the variability among the components to be
aggregated. This can be done by partitioning the fine-
scale components into relatively homogeneous sub-
aggregates. For example, the leaves within the canopy
might be partitioned into two groups based upon ir-
radiance. All the leaves with irradiance greater than
the mean irradiance could go in one group (i.e., the
upper canopy), and those with lower irradiance than
the mean could go in the other (i.e., the lower canopy).
Because the variability within these sub-aggregates is
smaller than it is in the fully aggregated canopy, the
aggregation error associated with applying the uncor-
rected equation (Eq. 3) to them will also be smaller.
The full aggregation is then made by taking a weighted
mean of the results from the sub-aggregates.

To illustrate the partitioning procedure, Eq. 3 was
applied to each of the two layers within the canopy
using the respective mean irradiance for each layer and
the overall mean light-use efficiency. The two estimates
were then weighted by leaf areas of the respective layers
and averaged to calculate the mean canopy photosyn-
thetic rate:

P _ LuP(im EO) + LIP(ila EO)

. T (18)

; _Ir(1 — e™*)
fi I=—_—_°- "
or u iL.

_ I(e—*Li — g—kLo
and I[ = _—T(e kL € )
!

where L, and L, are the leaf areas per unit of ground
area within the upper and lower canopy layers (L, +
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L, = L,), the function P(/, E,) is Eq. 3 evaluated at the
respective values of irradiance and light-use efficiency,
I, is the mean irradiance in the upper canopy layer and
I, is the mean irradiance in the lower layer. The most
obvious partitioning is to split the canopy into layers
with irradiance greater than and less than the canopy
mean irradiance, that is, let L, = (In[/,] — In[I])/k.
Estimates based on this partitioning only reduced error
to 89% of the uncorrected error (SRE = 2.30%) for the
thinner canopy, but reduced it to 34% of the uncor-
rected error (SRE = 6.25%) for the thicker canopy (Fig.
6, Table 1).

A similar partitioning based on light-use efficiency
also improves the estimate of mean photosynthetic
rate. This partitioning was made by splitting the can-
opy into segments with F, ranging between 0.018 and
0.0415 and between 0.0415 and 0.065. Errors were
reduced by this partitioning to 40% of the uncorrected
error (SRE = 1.03%) in the thinner canopy but to only
88% of the uncorrected error (SRE = 16.23%) in the
thicker canopy (Fig. 6, Table 1).

These estimates can be improved further by increas-
ing the number of partitions and by combining parti-
tions for irradiance with partitions for light-use effi-
ciency. As the number of partitions increased, the
estimates would converge to the value predicted by Eq.
9, the fully corrected equation. In the extreme this
disaggregation essentially reverts to the simulation of
individual leaves.

Calibration

Calibrations are a direct application of a fine-scale
relationship to a coarse-scale phenomenon but with
parameter values estimated by fitting the function to
coarse-scale data. Any parameter estimation procedure
can be used to make these estimations (least-squares
fitting, Snedecor and Cochran 1967; method of mo-
ments, Brunk 1975; extended Kalman filter, Cosby
1984, Cosby and Hornberger 1984; recursive least
squares and instrumental-variable, Young 1984; Lev-
enberg-Marquardt fitting, Press et al. 1986; Monte-
Carlo fitting, Hornberger and Cosby 1985). It is not
our purpose here to evaluate the relative merits of these
procedures. We assume that they will all give similar
results where they are applicable.

We used a Levenberg-Marquardt routine (Press et
al. 1986: 523) to estimate P,, and E, by fitting Eq.
2 to the data generated with Eq. 9 based on 100 even-
ly spaced values of I, ranging from 20 to 2000
umol-m~2-s~!. This calibration can be done using ei-
ther the mean-within-canopy or the top-of-the-canopy
irradiance for 7in Eq. 2. However, as will become clear
below, there are disadvantages to retaining the two
parameters needed to calculate the mean irradiance
(i.e., k and L,). We therefore calibrated using I.

Error was reduced to 32% of the uncorrected error
(SRE = 0.82%) in the thinner canopy and to 18% (SRE
= 3.29%) in the thicker canopy (Fig. 7, Table 1). In
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the thinner canopy, estimates of P,, and E, were 9.9
pmol-m~2-s7! and 0.031 pmol/umol, respectively.
These estimates are close to their respective mean val-
ues for the fine-scale relationship (i.e., 10 ymol-m=2-s!
and 0.0415 umol/umol) because of the low overall ag-
gregation error in the thinner canopy. On the other
hand, in the thicker canopy, where aggregation error
was more severe, the estimates of P,, and E, were well
removed from the fine-scale values. The estimate of
P, was 8.4 umol-m~2-s7!, and the estimate of E, was
0.011 umol/umol. The value for E, is not even within
the range (0.018 to 0.065 umol/umol) of the fine-scale
values. Such shifts in parameter values should be ex-
pected any time the same equation is applied at dif-
ferent scales. Parameter values consistent with data
measured at one scale, therefore, may not be consistent
with data measured at another scale (Cushman 1986).
For example, if Eq. 2 were calibrated with data ob-
tained by enclosing a single leaf within a cuvette, the
parameter estimates would not be the same as those
based on a calibration with data obtained by enclosing
the entire canopy in a large cuvette (assuming such a
thing could be done). By calibrating Eq. 2 to data gen-
erated with Eq. 9 we have, in essence, treated the can-
opy as if it were a “big leaf”’ enclosed in a cuvette to
obtain the data needed for the calibration.

Calibrations correct for all sources of aggregation
error simultaneously, including hidden and unknown
sources. They are generally very good at reducing this
error. However, there are three obvious disadvantages
to the calibration approach. (1) Coarse-scale data are
required to perform the calibration. These data are
often difficult to acquire, and their absence may, in
fact, be the motivation for scaling up from fine-scale
data. (2) The parameter estimates are valid within the
range of the calibration data, but the reliability of the
calibration may decrease outside this range. (3) Only
responses to changes in variables already represented
in the calibrated equation can be simulated. Responses
to variables that would become incorporated if the
equation were further transformed through a rigorous
aggregation would be lost. For example, calibrations
of Egs. 2 or 8 could not be used to simulate responses
to changes in canopy leaf area because L, is missing
in these equations. On the other hand, because L, is
in Eq. 7, it could be calibrated and used for this pur-
pose.

Combined approaches

The four error-reduction approaches described above
can also be used in combination with one another. For
example, the equation derived from a partial transfor-
mation for irradiance (Eq. 7) could be used instead of
the uncorrected relationship (Eq. 3) in a partitioning
for light-use efficiency. The number of combinations
of error sources and corrections is large, and will not
be illustrated here. However, combinations culminat-
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ing with a calibration (it only makes sense to do the
calibration last) are particularly powerful. For example,
in the thicker canopy (L, = 6), the partial transfor-
mation for irradiance (Eq. 7) was the most effective
approximation to the fully corrected equation (Eq. 9).
This transformation not only reduces the aggregation
error, it also improves the shape of the curve. Cali-
brations of this already partly corrected function might
therefore be expected to work even better than either
the transformation or the calibration alone (Fig. 7).
Indeed, calibration of the irradiance transformation
(Eq. 7) to data for the thicker canopy reduced error to
4% of the uncorrected error (SRE = 0.77%). This pro-
cedure is therefore about three times more effective
than any of the other corrections! Because the trans-
formed equation already approximated the full cor-
rection well, its calibration yielded estimates of P,, and
E, that were not very different from the fine-scale val-
ues (9.8 umol-m~2-s~! and 0.040 pmol/umol, respec-
tively). Following any of the corrections with a cali-
bration is highly recommended.

ERROR PROPAGATION

In each of the correction procedures described above,
except the calibration procedure, the variability among
the fine-scale components had to be characterized and
somehow incorporated into the corrected equations.
Incorporating this variability inevitably increases the
number of parameters in the corrected equations over
the number in the uncorrected equation. Each of these
parameters needs to be estimated in some way. Error
associated with these estimates can propagate through
the model and decrease the precision of the predictions.
This loss in precision can be rectified to some extent
if all the parameters are estimated simultaneously to
account for the covariance between parameters (e.g.,
with a Monte Carlo calibration like that of Hornberger
and Cosby 1985). Most parameter estimates, however,
will be independent of one another even if the param-
eters are not truly independent. There can be a sub-
stantial trade-off between this decrease in precision due
to error propagation in the corrected equations and the
decrease in accuracy associated with aggregation error
in the uncorrected or partially corrected equations
(O’Neill 1973).

Clearly, this trade-off between precision and accu-
racy depends not only upon the magnitude of aggre-
gation errors but also upon how precisely the param-
eters can be estimated. As an illustration, we assume
that all the parameters can be determined to within
5% of their true values. Estimates were made for the
thicker canopy (L, = 6) with the same 100 top-of-the-
canopy irradiance values used above. Thirty-two com-
binations of parameter values were used in the equa-
tions by assigning P,,, E,,, Eo, k, and L, values either
5% above or 5% below their original values. In the case
of the calibrated model, four combinations of param-
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eter values were used by assigning P,, and E, values
+5% of the calibrated values. Estimates made with the
altered parameters were compared directly to estimates
made with the original parameters using the same
equation, not to estimates using the fully corrected
equation. In this way, errors caused by parameter un-
certainty were isolated from those due to aggregation.
Propagated parameter error was quantified by calcu-
lating the standard relative error (SRE, Eq. 13) between
the estimates with and without parameter alteration.
The largest of the 32 (or 4) SRE values for each cor-
rection was used as an index of the potential propagated
error due to parameter uncertainty.

The propagated error was ~10% (range = 9.47 to
12.01%) for all but two of the corrections; the error
associated with the moment expansion for irradiance
was >25%, and the error associated with the calibra-
tion was only 5%. The large error for the moment
expansion was the result of a high sensitivity of the
derivatives and moments to the parameter perturba-
tions. If more terms were included in the expansion,
this error would be attenuated and would eventually
converge to 11.98%, the propagated error for the fully
corrected equation (Eq. 9). However, as with the ex-
pansion estimates themselves, it is difficult to deter-
mine a priori the number of terms required before the
error converges.

The low error associated with the calibration was a
direct consequence of the calibrated equation having
only two parameters rather than four or five as in the
other equations. Even when combined with the aggre-
gation error (3.29%), the total error associated with the
calibration was only 8.29%, while that for the fully
corrected equation (Eq. 9) was 11.98%, all of which
resulted from the propagation of parameter uncertainty
(i.e., no aggregation error). The total error associated
with the calibration could have been worse than that
for the fully corrected equation if the error associated
with estimating parameters for the calibrated equation
had been larger (about £10%). A small number of
parameters does not guarantee small total errors be-
cause aggregation error and the precision of parameter
estimates must also be considered.

SUMMARY AND CONCLUSION

Most ecological knowledge is derived from small,
easily measured and easily manipulated systems. How-
ever, the focus of ecology is now expanding to include
far larger systems that are more difficult to measure or
manipulate (e.g., global systems). Models of these large,
coarse-scale systems will not be able to retain the de-
gree of detail and resolution used in models of fine-
scale, more tractable systems, and the equations de-
rived for the fine-scale processes cannot be applied
directly in coarse-scale models. Yet the ability to apply
the knowledge embodied in the fine-scale equations to
these coarse-scale models is extremely desirable. How
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can fine-scale knowledge be translated so it can be ap-
plied at coarser scales? This is the question we have
addressed in this paper.

As the scale of perspective becomes coarser, and
larger systems are considered, smaller components are
generally aggregated to maintain manageable com-
plexity in the models. Because of variability among the
components being aggregated, any nonlinear relation-
ship describing the behavior of the smaller components
will be unreliable when directly applied to the aggre-
gate. The error will increase with the variability among
fine-scale components and with the depth of the con-
cavity in the equations describing the fine-scale pro-
cess.

Variability among fine-scale components can be as-
sociated with any of the variables in the fine-scale equa-
tion. To make effective corrections, it is often useful
to identify, a priori, the sources that cause the most
severe aggregation error. To this purpose, we used a
Monte Carlo sampling procedure to quantify the con-
tributions of various sources of error. This procedure
can be used to rank sources of error so that corrections
can first be made for the most severe ones. However,
this ordering can change from situation to situation; a
correction for one variable might be more effective
than a correction for another variable under some con-
ditions, but the reverse might be true under other con-
ditions. In the canopy example used in this paper, cor-
rections for light extinction were more effective than
corrections for light-use efficiency when the canopy was
thick, but in thin canopies the reverse was true.

Application of the statistical expectation operator to
the fine-scale equations is an effective means of trans-
forming fine-scale equations into coarse-scale process
descriptions. Fine-scale variability is thereby incor-
porated into the transformed equations through a sta-
tistical characterization. In theory, this procedure could
be applied sequentially to all forms of variability among
the fine-scale components, thus providing a rigorous
analytical transformation of the fine-scale equations so
they can be used to describe coarse-scale properties of
the aggregated system. However, the procedure is
sometimes difficult or impossible to apply because (1)
adequate statistical characterizations of the fine-scale
variability are difficult to find and (2) each transfor-
mation makes the equations more complex and sub-
sequent transformations become more and more dif-
ficult.

There is also a cost associated with such transfor-
mations. Each transformation incorporates parameters
characterizing a particular aspect of the fine-scale vari-
ability into the corrected equations. The error associ-
ated with the estimation of these new parameters will
be propagated through the model, and, as more pa-
rameters are added, the model predictions become less
precise. Thus, although the transformations increase
the accuracy of the model by reducing aggregation er-
ror, they also decrease its precision by incorporating
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more error in the form of more parameters. Because
of the increase in complexity of the equations, there is
also a loss in heuristic value with each successive trans-
formation. The simplicity of Eq. 3, for example, makes
it far easier to comprehend than Eq. 9. The simpler
equations are also easier to analyze and manipulate,
making them far more useful. Nevertheless, transfor-
mations for some of the more serious sources of ag-
gregation error are often worthwhile.

Three less rigorous forms of transformation were
also described. The first, a moment expansion, is an
approximation of the rigorous transformation based
on the expectation operator. The expectation operator
applied to a fine-scale equation can be expressed as an
infinite series. The first term in the series is the fine-
scale equation evaluated at the mean value of the vari-
able for which corrections are being made. The re-
maining terms are adjustments to this initial estimate
using successively higher-order statistical moments
(variance, skew, kurtosis, etc.) of the distribution of
the variable. The series will eventually converge so that
successive terms do not significantly improve the es-
timate. However, unless the higher-order derivatives
of the fine-scale equation or the higher-order moments
of the variable distributions are known to be zero, it
can be difficult to determine a priori how many terms
will be necessary for convergence.

Partitioning, the second of the less rigorous trans-
formations, reduces the aggregation error by reducing
the degree of aggregation. Instead of aggregating all of
the fine-scale components into a single coarse-scale
component, they are first aggregated into a manageably
small number of intermediate-scale components. A
weighted mean of their intermediate-scale behaviors
is then used as an estimate of the coarse-scale rela-
tionship. This partitioning is most effective when vari-
ability within each of the intermediate-scale compo-
nents is as small as possible. An optimal partitioning
will therefore depend upon the distribution of the vari-
able for which corrections are being made.

The third of the less rigorous corrections is a direct
calibration of the fine-scale equation to coarse-scale
data. The major advantage of this technique is that the
complexity of the model can be kept to a minimum.
This means that there will be fewer parameters and
therefore fewer sources of error. This retention of pre-
cision can often outweigh any gain in accuracy achieved
by using one of the other transformations. However,
there are three important disadvantages to calibration:
(1) they require coarse-scale data; (2) predictions based
upon them can become less reliable outside the range
of the data used for calibration; and (3) they can only
be used to simulate responses to changes in variables
that are already explicitly represented in the calibrated
equation. Nevertheless, very few ecological models can
be realistically applied without some final calibration
at the coarser scale. Thus, the most important contri-
bution of this procedure may be found in its combi-
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nation with other transformation techniques. The best
results will be achieved with an aggregation scheme
that optimizes the balance between the gain in accuracy
associated with reduced aggregation error and the loss
of precision associated with increased model complex-
ity.

Any effective aggregation of fine-scale knowledge to
anticipate coarse-scale response requires some data or
information from the coarser scale. Transformations
using the expectation operator and the moment ex-
pansion require information on the statistical distri-
bution of fine-scale components across the extent of
the coarser scale. Calibration requires data on the ag-
gregate response at the coarser scale, and partitioning
requires data (e.g., means) from intermediate scales.
Statistical description of fine-scale components may in
many circumstances be easier to acquire than data on
the aggregate response of coarse-scale components. The
distribution of climate-growth response for individual
forest stands vs. holistic measurements of the aggregate
response of a forested landscape to climate change is
one example. On the other hand, aggregate responses
may, in some cases, be more empirically accessible
than the statistical description of fine-scale compo-
nents. For example, measurements of gas exchange for
low-stature canopies may be more practical than gath-
ering data on the statistical distribution of the com-
parable response for individual leaves and their inter-
actions.

Thus, the availability of data from the coarser scale
will, in large part, determine the choice of aggregation
scheme. The most effective approach is determined by
the specific application, and general recommendations
are hard to make. However, our own general approach
can be summarized as follows:

(1) If high quality data from the coarser scale are
available, use them to calibrate either the fine-scale
equation directly or the least biased of the partially
corrected equations you are able to compute. It is dif-
ficult to imagine circumstances where, data permitting,
it is not preferable to approach a problem directly at
the scale of interest. However, it is important to re-
member that although a calibrated parameter may re-
tain the name and units associated with it at finer scales,
the parameter is now an “effective” parameter whose
quantification is no longer bound by empirical mea-
surements at finer scales (Cushman 1986, Beven 1989).

(2) If coarse-scale data are unavailable, or if the ex-
press purpose of the activity is to determine if or how
fine-scale phenomena are expressed at coarser scales,
a statistical description of the fine-scale components
across the extent of the coarser scale should be ac-
quired. The fine-scale attributes should then be ranked
by their contribution to aggregation error. Transfor-
mations combining the expectation operator, moment
expansions, and partitioning can then be applied to the
important sources of error. Transformations can be
terminated when the complexity of the transformed
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model or the potential for error propagation exceeds
tractable or practical limits.
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