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ABSTRACT 

M.F. Gonzalez-Montes. Comparison of Methods for Optimizing Stratified Sampling 

Allocation in Area Estimation Across Multiple Estimates, 76 pages, 21 tables, 2024. APA style 

guide used. 

Area estimation is crucial in forest monitoring at local, national and global levels. 

Stratified sampling is widely used, with estimates derived from samples and satellite imagery. 

In programs like REDD+, map strata based on classes such as deforestation and afforestation 

may greatly improve precision of area estimates. Sample allocation to strata is critical, and 

Neyman allocation is optimal for a single target variable. This research examined the standard 

errors of different allocation methods, Average Optimal (AvgOpt), Bethel, and SSW, when 

multiple target estimates are involved. Evaluations used real populations and populations 

constructed from an experiment design that controlled reference proportions and map accuracy. 

Although no method was universally superior, the simple AvgOpt method performed 

comparably or better than Bethel and SSW in most populations. Bethel/SSW standard error 

ratios were sensitive to area disparities. AvgOpt/SSW ratios were correlated strongly with area 

differences and the percentage of the more common target class. 

M.F. Gonzalez-Montes 

Candidate for the degree of Master of Science, August 2024 

Stephen Stehman, Ph.D. 
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Manuscript  

1. INTRODUCTION 

Area estimation plays a crucial role in forest monitoring, encompassing various local, 

national, and global applications. For example, accurate estimation of land surface allocation 

is indispensable for country-level reporting within initiatives such as the Reducing Emissions 

from Deforestation and Forest Degradation (REDD+) program (Olofsson et al., 2014). This 

includes precise measurement of activity data, which delineates human actions such as 

deforestation and degradation within forested areas (Aryal et al., 2021). 

Accurate (i.e., unbiased) and precise estimation of these parameters representing forest 

loss, forest gain, and stable forest are essential for effective forest monitoring for several 

reasons. Firstly, it enables the identification of areas experiencing substantial changes, allowing 

for targeted conservation efforts and policy interventions. Secondly, it aids in assessing the 

overall health and resilience of forest ecosystems, guiding sustainable management practices. 

Thirdly, precise estimates are crucial for countries participating in initiatives like the REDD+ 

program, where results-based payments are linked to verifiable reductions in emissions. The 

meticulous collection and analysis of activity data, coupled with accurate and precise 

estimation of deforestation, degradation, and forest gain, serve as the cornerstone for informed 

and effective forest monitoring. These efforts play a pivotal role in addressing the challenges 

posed by climate change, ensuring the preservation of forests as vital components of the global 

ecosystem (Goetz et al., 2015). 

The identified problem revolves around the challenges presented in achieving this 

precision improvement, given the spatial variability of forests and the complexities involved in 

sampling to assess changes in forest carbon. It is imperative to recognize the importance of 

https://www.zotero.org/google-docs/?F7TEzX
https://www.zotero.org/google-docs/?byGJAg
https://www.zotero.org/google-docs/?CoE2M3
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area estimation and the role of sampling in overcoming the challenge of obtaining a census of 

reference data. Sampling becomes a critical aspect, and stratified sampling is often applied to 

the area estimation problem. Choosing an effective sample allocation to strata plays a 

fundamental role in ensuring the lowest possible standard error (i.e., best possible precision) 

for the estimated area, for example, in estimating levels of forest carbon. Sampling in scientific 

research and data collection provides an effective methodology for obtaining conclusions about 

a larger population that are supported by statistical inference. Sampling saves resources and 

time by selecting a subset of the population under study. Among the various types of sampling, 

stratified sampling emerges as an essential tool. This approach divides the population into 

homogeneous strata or subgroups potentially yielding improved precision relative to simple 

random sampling. Additionally, stratified sampling leverages geographic information through 

the use of maps or imagery to delineate strata, strategically allocating the sample based on 

specific spatial characteristics. This integration of mapping technology enhances the 

effectiveness of stratified sampling in addressing spatial variability (Olofsson et al., 2014; 

Stehman & Wagner, 2024; Wagner & Stehman, 2015). 

Stratified random sampling is a practical approach, primarily focused in this study on 

area estimation. This sampling method offers flexibility by allowing an increased sample size 

for classes covering a small proportion of the area. This, in turn, reduces standard errors of area 

estimates for less common classes, aligning with the overarching goal of estimating area 

specific to each class. In terms of desirable design criteria, stratified random sampling stands 

out as a probability sampling design that is relatively straightforward to implement. It is a 

commonly employed method in accuracy assessment and area estimation, offering the 

advantage of being well-known within the remote sensing community (Olofsson et al., 2014).  

https://www.zotero.org/google-docs/?VleYm8
https://www.zotero.org/google-docs/?VleYm8
https://www.zotero.org/google-docs/?tIkXM6
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Within stratified sampling, the allocation of the sample to different strata is a crucial 

phase that directly influences the precision of the estimates. The sample size allocated to each 

stratum is an important decision, and the allocation will depend on the objectives specified. 

Allocation refers to the proportion of the sample assigned to each stratum and is determined 

based on various criteria, such as the internal variability of the strata and the specific objectives 

of the research (Stehman & Wagner, 2024). There are different allocation methods, each with 

its advantages and practical considerations.  

1. Optimal (Neyman) Allocation: Aims to minimize the variance of an estimate by 

assigning a larger sample size to strata with higher variability, and also taking into 

account the relative size of each stratum within the study region (Neyman, 1934). 

Neyman allocation applies to the case for which a single target estimate is the objective 

of the optimization. 

2. Proportional Allocation: Distributes the sample proportionally to the size of the strata, 

ensuring that each stratum contributes according to its relative size (area in this 

application) in the total population; proportional allocation is an equal inclusion 

probability sampling design which translates into greater simplicity of analysis (i.e., 

sample observations do not need to be weighted as they would for an unequal 

probability sampling design). Proportional allocation provides a useful indicator of the 

effectiveness of strata. That is, both proportional allocation and simple random 

sampling are equal probability sampling designs for which all sample units have the 

same probability of being included in the sample. The precision of the area estimate for 

proportional allocation accounts for the stratification, whereas the precision of the 

estimate from simple random sampling does not. Because both sampling designs have 

the same equal inclusion probabilities, any difference in precision between simple 

https://www.zotero.org/google-docs/?RiGTf0
https://www.zotero.org/google-docs/?0JJ0RG
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random sampling and proportional allocation is attributable to the effectiveness of the 

strata.  

3. Equal Allocation: Assigns the same sample size to all strata, regardless of their size, 

which can simplify implementation but may not be efficient in terms of precision. Equal 

allocation is often used when the primary objective of sampling is assessing per class 

user’s accuracy of a map. While not directly related to the area estimation objective, 

evaluating precision of equal allocation provides understanding of the trade-offs of 

allocating the sample for one set of objectives (estimating user’s accuracy) versus an 

allocation targeting different objectives (estimating area). 

4. Bethel Allocation: Determines the total sample size and allocation of the sample to 

strata for multivariate optimization (i.e., two or more estimates, for example forest loss 

and forest degradation). Similar to the Särndal et al. (1992) method that follows, the 

Bethel method extends the idea of Neyman allocation to two or more target estimates 

(Bethel, 1989). The main goal of this allocation is to minimize costs under the 

constraints of specified precision levels of estimates (coefficient of variation, CV) (De 

Meo, 2022). The Bethel allocation procedure is available in the R package 

'SamplingStrata'. 

5. Särndal et al. (1992, p. 469) (SSW) Allocation: This method is particularly useful in 

multivariate stratified surveys, where the goal is to work out a compromise allocation 

when the objective is to estimate area of two or more classes. 

It is crucial to emphasize that both Bethel and SSW allocations play a significant role 

in optimizing survey estimates, particularly when dealing with multiple estimates. Unlike 

Neyman allocation, which focuses on optimizing a single estimate, the Bethel and SSW 

allocations are designed to enhance precision by considering two or more estimates 

simultaneously. Each allocation method has specific implications for the precision of the 

https://www.zotero.org/google-docs/?y8gIl9
https://www.zotero.org/google-docs/?y8gIl9
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estimates, and it is crucial to select the appropriate approach based on the objectives and 

characteristics of a specific application.  

Precision of area estimates is indispensable for well-informed decision making. The 

fundamental question that guides this research is how the different optimal allocation methods 

used in the stratified sampling approach compare in terms of reducing standard errors when 

more than one target estimate is of interest. The research objectives are the following: 1) 

evaluate and compare different optimal allocation methods to identify those that offer more 

precise estimates of area that will contribute better information to assessments; 2) assess the 

relationship between relative performance of the proposed allocation methods with factors such 

as the proportion of area of the different target classes and the accuracies of maps used to 

construct strata (e.g., user’s and producer’s accuracies). The second objective is primarily 

addressed by a designed experiment in which populations (cases) are created to assess the 

impacts of particular features of the populations. 

2. METHODS  

2.1. Area Estimation from an Error Matrix 

The approach to area estimation addressed in this thesis connects directly to the error 

or confusion matrix of map accuracy assessment (Stehman, 2013). As indicated in Olofsson et 

al. (2014), the error matrix is a crucial component for assessing the accuracy of classifications 

based on remote sensing data. To create an error matrix, we compare classifications from 

remote sensing data (i.e., map labels) to reference labels (i.e., “reference” meaning the best 

available assessment of ground condition). A cross-tabulation is used to compare the class 

labels assigned by the classification with the reference labels obtained from sample sites. The 

matrix enables the quantification of both accuracy and area. Correct classifications are 

https://www.zotero.org/google-docs/?1qWHMG
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highlighted along the main diagonal of the matrix, while the off-diagonal areas indicate 

omission and commission errors. Omission errors occur when reference land change is 

observed but mapped as a stable class, potentially leading to significant uncertainty in the 

parameter estimates derived from the sample data, such as area estimates of land change 

(Olofsson et al, 2020). Commission errors occur when the classifier incorrectly assigns (maps) 

a pixel to a class, leading to an overestimation of the area for that class (Olofsson et al, 2013). 

The rows of the matrix correspond to the map labels derived from the classification of remote 

sensing data, whereas the columns correspond to the reference labels. 

The error matrix is useful for estimating the area proportion of various classes. For 

example, if forest loss is a class of interest, the row total of the error matrix would show the 

area assigned as forest loss by the map, and the column total would show the area assigned to 

forest loss according to the reference classification. However, the proportion of area according 

to the reference classification must be estimated from the sample, which introduces uncertainty 

due to sampling variability (Olofsson et al., 2014). When using stratified random sampling, 

one of the most common approaches is a direct stratified estimator with the map classes defined 

as strata. This type of estimator is unbiased and often recommended in the literature for 

reducing standard errors (Stehman, 2013). Stratified sampling requires consideration of the 

sample allocation to strata, the subject of this research. 

2.1.1. Evaluation of sample allocation options 

We evaluated six allocation methods for stratified sampling. These methods included: 

1) Optimal allocation (Neyman); 2) Average of Neyman allocations applied separately for each 

individual estimate; 3) Proportional allocation; 4) Equal allocation; 5) Bethel allocation, and 

6) SSW. The reason for including each method is provided in the following. Neyman's optimal 

allocation is considered a standard approach, but it is designed to optimize a single target 
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estimate. As stated earlier, proportional allocation is not intended to be optimal, but it does 

provide one way of quantifying the effectiveness of strata (i.e., comparing precision of 

proportional allocation, which has equal inclusion probabilities, to optimal allocation, which is 

the most effective allocation for the selected strata). Bethel and SSW allocations represent 

approaches that were designed to optimize simultaneously estimation of two or more 

parameters, and therefore these methods extend the concept of Neyman allocation to more 

complex situations. The average of the Neyman allocations from the optimization of each target 

parameter individually is an intuitively appealing and easy to compute allocation but is ad hoc 

in nature (i.e., not based on a formal optimization protocol). Although the "Equal" allocation 

method is less relevant to the area estimation objective, it is a common design for reference 

data collection for accuracy assessment and is included here to allow comparison to the 

allocations more targeted toward the objective of area estimation. 

In the following steps, each allocation method mentioned above is described in detail. 

The methods require information that must be extracted from an error matrix. The stratum size 

expressed as a proportion of area of the stratum is 𝑊ℎ =
𝑁ℎ

𝑁
, and 𝑃ℎ is the proportion of the area 

of stratum h that is the target class according to the reference classification. For example, if the 

forest loss stratum has area of 20 𝑘𝑚2 and 10 𝑘𝑚2 of that stratum area is actual (reference) 

forest loss, 𝑃ℎ for that stratum is 0.50. For simple random sampling within strata and assuming 

all sample units within a stratum are the same size (area), the population proportion is 

𝑃ℎ =
𝑁𝑗ℎ

𝑁ℎ
      (1) 

where 𝑁𝑗ℎ is the number of units with the reference label of the target class and 𝑁ℎ is the sample 

size in stratum ℎ. The population variance in stratum ℎ (for large Nh) is 
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𝑃ℎ(1 − 𝑃ℎ) = (
𝑁𝑗ℎ

𝑁ℎ
) (1 −

𝑁𝑗ℎ

𝑁ℎ
)   (2) 

Note that this variance corresponds to the usual population variance of a variable y, but here 

we have the special case that y=1 if the pixel has the reference class label of the target class 

and y=0 otherwise. The square root of the stratum variance (standard deviation) multiplied by 

the stratum weight (Wh) is an important input to the optimal allocation calculations:  

𝑊ℎ√𝑃ℎ(1 − 𝑃ℎ)                                               (3) 

The total sample size (n) is not critical to this analysis because the primary interest is the percent 

allocation of the sample to strata and this allocation is independent of n.  

1) Optimal Allocation (Neyman) 

𝑛ℎ = 𝑛
𝑊ℎ√𝑃ℎ(1−𝑃ℎ)

∑ ⬚𝐻
ℎ=1 𝑊ℎ√𝑃ℎ(1−𝑃ℎ)

                                    (4) 

2) Proportional Allocation 

nh = nWh                                                                                        (5) 

3) Equal Allocation 

𝑛ℎ =
𝑛

𝐻
                                                                     (6) 

where 𝐻 is the number of strata. 

4) Bethel 

To determine the optimal allocation while meeting precision requirements across 

multiple variables (i.e., target estimates), we utilized the 'SamplingStrata' package in R. This 

package employs a genetic algorithm approach, treating each potential allocation as an 
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individual within a population. The fitness of these individuals is assessed using the Bethel-

Chromy algorithm, ensuring that resulting sample sizes meet specified precision constraints for 

two or more target estimates (De Meo, 2022). The functionalities provided by the 

'SamplingStrata' package enable: 

(a) Analysis of optimization results. 

(b) Selection of a sample from the frame based on the optimal allocation. 

The 'Bethel' function within the 'SamplingStrata' package determines the optimal 

sample size allocation under predefined precision constraints, for example by specifying the 

desired coefficient of variation (CV) for the target estimates. To implement the Bethel 

allocation, the input dataset should contain the following information: 

1. Number of strata, H 

2. Mean and standard deviation of each target variable within each stratum, which is 

obtained as  𝑆ℎ = √𝑃ℎ(1 − 𝑃ℎ) 

3. Population size (𝑁ℎ) of each stratum. 

4. Indication of whether the stratum undergoes a census (=1) or a sample (=0) (CENS); 

for this case we set CENS=0 to indicate a sample is used. 

5. Value of the domain of interest to which the stratum belongs (DOM1), default 

suggested value used = 1 (i.e., we have just a single domain of interest, the entire 

“region of interest” that the area estimates are intended to apply to). A domain is also a 

subset or subgroup of a population, but unlike a stratum, a domain is not used in the 

selection of the sample. Domains are often subgroups of interest for reporting results. 

A subgroup can be both a stratum and a domain. This occurs when the subgroup is used 

in the sample selection and is also of interest for reporting results. 
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6. Cost associated with obtaining the data from a single unit in the stratum (COST), default 

suggested value used = 1 (i.e., equal cost per stratum). 

 In the analyses using the Bethel method, CV was specified to be equal for all target 

estimates and was set to 0.05. Changing the CV to a different magnitude would not change the 

percent allocation of the optimal allocation determined by the Bethel method. That is, as long 

as each class is specified to have the same target CV, whether that target is 0.05 or 0.20, the 

percent allocation of sample size to strata would be the same. The Bethel method computes the 

total sample size n needed to achieve the target CVs. The total sample size n determined by the 

Bethel procedure would be larger for the CV=0.05 case versus CV=0.20 because a larger n 

would be needed to achieve a smaller CV. Further, the achieved or realized CVs for the target 

estimates will not necessarily be the same even though equal CVs were specified as the input 

to the algorithm. The specified CV is the threshold that the optimization must attain, but it 

could achieve an even smaller CV for one or more of the target estimates included in the 

optimization. For example, if there are two target estimates and each is assigned a CV of 0.05 

to attain in the optimization, the achieved CV of one of the classes may be smaller than 0.05 as 

the sample size increases to get the other class to the CV threshold of 0.05. Typically we would 

expect a rarer class to require larger n to achieve a CV of 0.05 and the more common target 

class would then have a CV smaller than 0.05.    

5) SSW 

The SSW allocation seeks to optimize the distribution of the sample between strata, 

taking into account the variability of the variables of interest within each stratum. This 

approach guarantees efficient sample allocation, maximizing the precision of population 

estimates. To calculate the SSW allocation, we implement the following steps using notation 

directly following Särndal et al. (1992, pp. 469-470): 
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𝑉𝑙𝑖𝑛 = ∑ 𝐻𝑖𝑉𝑖
𝐼
𝑖=1                                           (7) 

where “𝑉𝑙𝑖𝑛” indicates that this variance is a linear combination of the variances of each target 

estimate, 𝐻𝑖 is an importance weight assigned to the estimate (e.g., a larger weight could be 

assigned to estimating deforestation than to estimating degradation), 𝑉𝑖 corresponds to the 

variance of each estimate i, and I is the number of strata. The sample size for each stratum is 

calculated such that  

                             𝑛ℎ ∝ 𝑁ℎ√∑ 𝐻𝑖𝑆𝑖ℎ
2𝐼

𝑖=1                                             (8) 

where 𝑆𝑖ℎ
2  is the variance of the variable 𝑦𝑖 in stratum h. Särndal et al. (1992) mention that the 

arbitrariness of the specified weights may be viewed unfavorably, but a similar concern could 

be expressed for choosing CV of the different estimates in the Bethel approach. In our analysis, 

we used equal weights (equal 𝐻𝑖) for the target classes. 

6) Average Optimal (AvgOpt) 

A variation of Neyman's Optimal Allocation, called 'Average Optimal,' was developed 

to extend the method to two or more target estimates. The technique involves computing 

Neyman's optimal allocation individually for each variable and then averaging these optimal 

allocations. This method has no formal mathematical support as optimal, but instead assumes 

that “splitting the difference” between the separate Neyman optimal allocations may prove to 

be a simple and effective allocation when two or more target estimates are of interest. For 

example, the average optimal allocation for two target estimates in one stratum h would be  

                                               𝑛ℎ =
𝑛ℎ1+ 𝑛ℎ2

2
                                             (9) 
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if 𝑛ℎ1 is the Neyman optimal allocation for the first target class and 𝑛ℎ2 is the Neyman optimal 

allocation for the second target class. 

 In the analyses that follow, the CV for the Bethel allocation was set to 0.05 for all target 

estimates and for the SSW allocation equal weights were specified. The two optimizations, 

therefore, are set up to achieve different objective functions and we would expect different 

outcomes from the two approaches. It is difficult to conceive of a way to equate the 

specification of CVs (Bethel) with specification of importance weights (SSW) that would 

create uniform initial conditions for the two optimization methods. In the case of optimizing to 

target two or more estimates, there are several ways to define optimization criteria so there is 

not a single solution to the problem. However, it would be useful to compare the outcomes of 

the different methods to better understand the differences in sample allocation and precision 

that would occur when applying these methods in different circumstances. 

In practice, we could choose either the Bethel approach which operates on the basis of 

CV or the SSW approach which allows weighting of the target estimates based on specified 

importance weights of the estimates. In our analyses, we compare the performance of the Bethel 

and SSW optimizations under the simplest of conditions that could be adopted in practice which 

are equal CVs for Bethel and equal importance weights for SSW. Departures from equal CVs 

and equal importance weights would be application-specific so we do not explore here unequal 

CVs and unequal importance weights.    

2.2. Experimental design 

This component of the study focuses on how different characteristics of the population 

(i.e., error matrix) influence the allocation methods and resulting standard errors. Populations 

were created with three strata and two target classes while controlling factors such as user’s 

and producer’s accuracy. The aim is to comprehensively understand how these factors affect 
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the precision of the area estimates. By creating populations with known characteristics, we are 

able to implement an experimental design approach because we control the levels of different 

factors potentially impacting performance of the different optimal allocation methods.  

The experimental design consists of 32 populations each with H=3 strata and with two 

classes targeted for optimization. The factors evaluated in the experimental design are the 

following: 

Factor 1: Reference proportions of the two target classes: Values of Pa and Pb were 0.01 

and 0.05. (In terms of notation, the subscripts “a” and “b” are specific to the proportion of area 

of each target class, a and b. We also use “P” to denote stratum proportions and the subscript 

“h” with Ph represents the stratum number, h=1, …, H). 

Factor 2: User’s and producer’s Accuracies: Values of 60% and 85% were used in all 

combinations within the two different classes, Class a and Class b, resulting in a total of 16 

different combinations (see Table 1). 

Factor 3: Omission error of each target class in the large W3 stratum. 

Table 1. Experimental design layout for populations with different combinations of user’s and 

producer’s accuracies for the two reference class proportions Pa and Pb. 

Population 
Reference 

Proportion 
Accuracy  

class a 
Accuracy  

class b 

 Pa Pb User Producer User Producer 

1 0.01 0.05 0.60 0.60 0.60 0.60 

2 0.01 0.05 0.60 0.60 0.60 0.85 

3 0.01 0.05 0.60 0.60 0.85 0.60 

4 0.01 0.05 0.60 0.60 0.85 0.85 

5 0.01 0.05 0.60 0.85 0.60 0.60 
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6 0.01 0.05 0.60 0.85 0.60 0.85 

7 0.01 0.05 0.60 0.85 0.85 0.60 

8 0.01 0.05 0.60 0.85 0.85 0.85 

9 0.01 0.05 0.85 0.60 0.60 0.60 

10 0.01 0.05 0.85 0.60 0.60 0.85 

11 0.01 0.05 0.85 0.60 0.85 0.60 

12 0.01 0.05 0.85 0.60 0.85 0.85 

13 0.01 0.05 0.85 0.85 0.60 0.60 

14 0.01 0.05 0.85 0.85 0.60 0.85 

15 0.01 0.05 0.85 0.85 0.85 0.60 

16 0.01 0.05 0.85 0.85 0.85 0.85 

 

Two different populations were created for each of the 16 combinations of user’s and 

producer’s accuracies. These two populations, differentiated by the letters c and d (e.g., 

population 1c and 1d), had different 𝑃ℎ for classes a and b and were constructed to have 

different magnitudes of omission error to stratum 3, the stratum with the largest Wh. The c 

populations were constructed to have greater omission error in stratum 3, and the d populations 

were constructed to have smaller omission error in stratum 3. Construction of the 32 

populations used in the designed experiment is described in the next section. 

2.3. Construction of the Error Matrices in the Designed Experiment 

The construction process is explained below using the first pair of populations, 

population 1c and 1d, as an example case. 

Fixed Values (Green): These are known values and specified by the previously given Pa = 

0.01 and Pb = 0.05, and the total of all cells in the error matrix which will always equal 1. 
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Table 2. Fixed values of constructed error matrices. 

Population 1c Reference 
Total 

Map strata 

 a b c 

1     

2     

3     

Total 0.0100 0.0500  1.0000 

 

Calculated Values (Purple): These values depend on our fixed values and so are calculated 

first. The value in cell a1 must be such that it yields the specified producer’s accuracy of class 

a and so this cell is the product of the producer’s accuracy for class a and Pa. Next we calculate 

the total for stratum 1 (cell Total 1) which is done so that the specified user’s accuracy for class 

a is obtained. This is achieved by dividing the cell a1 value by the user's accuracy for class a.  

Table 3. Calculated values of constructed error matrices. 

Population 1c Reference 
Total 

Map strata 

 a b c 

1 0.0060   0.0100 

2     

3     

Total 0.0100 0.0500  1.0000 

 

Assigned Values (Yellow): Once the green cell and purple cell values are chosen, we need to 

specify two more cells of the error matrix (shaded yellow) and then the remaining cell values 

are determined by other constraints of the error matrix (i.e., row and column totals). For all the 

populations labeled as c, the values assigned for each class are 0.0001. By assigning this small 

value, most of the omission error for classes a and b is placed into the largest stratum which is 

stratum 3. For populations labeled as d, the goal was to place a small area of omission error for 

each of classes a and b into stratum 3. For class a, we chose the a2 cell so that the a3 cell was 

0.0001, and for class b we chose the value of the 1b cell so that the 1c cell was 0.0001. It was 
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not possible to choose the 1b cell to produce a value of 0.0001 in cell 3b (to match what was 

done for class a) while retaining the specified user’s accuracy for class a. 

Table 4. Assigned values of constructed error matrices. 

Population 1c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001  0.0100 

2 0.0001    

3     

Total 0.0100 0.0500  1.0000 

 

Remaining Calculated Values (Blue): These values can be calculated after obtaining the 

previously described values. The first value to be calculated is in cell b2, which should be equal 

to the product of our Pb and the producer accuracy of class b. Next, the total for stratum 2 

should be equal to the value obtained from the division of the value in cell b2 (previously 

calculated) by the user’s accuracy of class b. 

Table 5. Remaining values of constructed matrices. 

Population 1c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001  0.0100 

2 0.0001 0.0300  0.0500 

3     

Total 0.0100 0.0500  1.0000 

 

With this, the remaining values can be calculated simply by subtracting the known 

values from the total values.  
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Table 6. Constructed matrices of population 1c. 

Population 1c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001 0.0039 0.0100 

2 0.0001 0.0300 0.0199 0.0500 

3 0.0039 0.0199 0.9162 0.9400 

Total 0.0100 0.0500 0.9400 1.0000 

 

For population 1d, the process is the same, except the assigned values (in yellow) are 

replaced by the largest values that allow us to create the matrix, which are directly obtained 

from the previously constructed matrix and are observed in cells c1 and a3 (0.0039). 

Table 7. Constructed matrices of population 1d. 

Population 1d Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0039 0.0001 0.0100 

2 0.0039 0.0300 0.0161 0.0500 

3 0.0001 0.0161 0.9238 0.9400 

Total 0.0100 0.0500 0.9400 1.0000 

2.4. Real populations 

The data for this part of the research (Table 8) were obtained from the relevant scientific 

literature by selecting case study examples for which the source reported a full error matrix and 

included two or more rare classes that would be of interest as the target classes for optimization. 

These sources collectively offer a diverse range of methodologies, approaches, and findings 

related to land change detection and accuracy assessment. For our study, we extracted the 

relevant information from the confusion matrices and input that data into the different 

optimization methods.  
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More than one error matrix was obtained from some sources. This was because in some 

cases, more than two rare classes were identified in the error matrix, allowing for the analysis 

of various combinations of these classes. Additionally, some sources provided multiple error 

matrices, each with different accuracy values. The following were sources of data for the real 

populations: 

Table 8. Sources of real populations and attributes of the target classes for optimizing area 

estimates. 

Number Source 
Target Class 

a b 

R1 
Badjana et al. (2017) Table 4 RF 

Classification 
Forest Loss Savannah Loss 

R2 
Badjana et al. (2017) Table 4 SVM 

Classification 
Forest Loss Savannah Loss 

R3 Wickham et al. (2023) Table 6 Barren Land Wetland 

R4 Chen et al. (2023) Table 1 New Plantation Deforestation 

R5 Yang et al. (2022) Table 1 Cover Change Condition Change 

R6 Chen et al. (2021) Table 7 
Degradation 

Regeneration 
Degradation no 

Regeneration 

R7 
Forest Reference Level Sudan (2020) 

Table 10 
Gain Loss 

R8 
Activity Data Report for the ER 

Program of Lao PDR (2018) Table 

11 
Degradation Deforestation 

R9 Wickham et al. (2023) Table 6 Water Wetland 

R10 Dymon et al. (2011) Table 3 Deforestation Afforestation 

R11 Chen et al. (2021) Table 8 Deforestation Degradation 

R12 Olofsson et al. (2014) Table 6 Forest Gain Deforestation 

R13 Chen et al. (2021) Table 7 Deforestation 
Degradation no 

Regeneration 

R14 Wickham et al. (2023) Table 6 Barren Land Water 

R15 
Forest Reference Emission Level and 

Forest Reference Level Thailand 

(2020) Table 28 
Forest Gain Forest Loss 

R16 
The submission of Bangladesh’s 

Forest Reference Level for REDD+ 

under the UNFCCC (2018) Table 15 
Reforestation Deforestation 

R17 
The submission of Bangladesh’s 

Forest Reference Level for REDD+ 

under the UNFCCC (2018) Table 15 

Degradation 

Low 
Deforestation 



 

 

 

19 

 

The characteristics of the real populations are presented in Table 9. The number of strata 

H for each case study population is shown, along with the percentage of area and the user’s, 

producer’s, and overall accuracies for each target class. Class a is designated as the rarer 

(smaller) class, while class b is the larger of the two target classes (while still being one of the 

rare classes in each population). 

For class a, the percent area ranged from 0.12% (R5) to 2.39% (R7) and for class b the 

values ranged from 0.62% (R5) to 9.54% (R1). These values reflect the variability in area 

distribution among different sources, with some sources showing substantially greater area 

coverage for certain classes compared to others. 

Table 9. Characteristics of real populations. 

Source Strata 
% Area 

Accuracy % 

Producer's User's 
Overall 

a b a b a b 

R1 8 1.05 9.54 38.0 81.0 50.0 74.0 79.0 

R2 8 2.05 8.54 88.0 40.0 33.0 49.0 67.0 

R3 8 0.82 4.50 80.0 82.0 64.0 59.0 83.1 

R4 5 0.75 4.81 56.2 48.0 100.0 46.8 84.5 

R5 3 0.12 0.62 81.8 96.7 64.3 79.7 99.8 

R6 7 1.94 3.02 86.0 28.8 37.0 64.3 88.9 

R7 4 2.39 4.23 10.6 24.3 9.9 18.9 83.0 

R8 6 1.62 3.13 69.2 86.7 60.0 86.7 92.3 

R9 8 1.82 4.50 96.0 82.0 97.0 59.0 83.1 

R10 4 0.29 2.17 93.8 97.1 93.4 97.1 99.6 

R11 6 0.34 5.02 70.9 82.7 51.7 69.2 90.5 

R12 4 1.12 2.01 81.8 70.0 60.0 70.0 95.0 

R13 7 0.35 3.02 70.9 28.8 51.7 64.3 88.9 

R14 8 0.82 1.82 80.0 96.0 64.0 97.0 83.1 

R15 4 0.30 1.81 32.0 40.0 37.0 51.0 94.4 

R16 8 0.83 1.00 65.2 93.9 40.0 41.3 68.7 

R17 8 0.80 1.00 47.2 93.9 33.3 41.3 68.7 

Minimum 3 0.12 0.62 10.6 24.3 9.9 18.9 67.0 

Maximum 8 2.39 9.54 96.0 97.1 100.0 97.1 99.8 
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2.5. Ratios of Standard Errors of Area Estimates Under Different Optimizations 

To simplify the results and be able to observe the advantage of one allocation method 

over another, ratios of the standard errors resulting from the different allocation methods were 

used. These ratios, which always are based on each allocation method having the same total 

sample size, allow comparison of the relative precision of the methods used. The following 

standard error ratios are reported in the comparisons as these three ratios compare the allocation 

methods specifically constructed to optimize two or more target classes: 

1. Bethel/SSW 

2. AvgOpt/Bethel 

3. AvgOpt/SSW 

Ratios smaller than one would favor the allocation method listed as the numerator of the ratio. 

2.6. Correlation and Regression Analysis 

Correlation and regression analyses were conducted to explore the relationships 

between population characteristics and the performance of the different allocation methods in 

stratified sampling to identify the strength and direction of these associations. These analyses 

included data on several key variables, including producer’s, user’s and overall accuracies, the 

percent area of classes a and b, and the differences between these class areas. We also looked 

at the ratio of the standard deviations of the two target classes, √[𝑃𝑎(1 − 𝑃𝑎)]/[𝑃𝑏(1 − 𝑃𝑏)]. 

The primary focus was on evaluating associations between these factors and the standard error 

ratios Bethel/SSW, AvgOpt/Bethel and AvgOpt/SSW. 
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3. RESULTS 

3.1. Sample allocation 

Tables 10 - 12 show three examples of the sample size allocations resulting from the 

different methods (allocations for all populations can be found in the appendix). The total 

sample size is n=10,000 for all cases (the percent allocation of the sample to strata is obtained 

by inserting a decimal 2 places from the right of the sample size shown). In Table 10, the 

sample size allocations for the different methods are shown for real population R1 (see Table 

9 for description of real populations). There is an advantage of smaller standard error in both 

classes when using the Average Optimal, Bethel, and SSW allocation methods compared to 

Simple Random Sampling (SRS). However, for the Savannah Loss class, no advantage is 

observed when using the Bethel method. The sample size allocation is very different among 

the different allocation methods. The Neyman optimal allocations for the two target classes are 

notably different in strata 1, 2, 5, and 6, and both Neyman allocations are substantially different 

from proportional allocation (e.g., stratum 1). In this example, the Bethel and SSW allocations 

differ greatly in strata 1, 2, and 3. However, the Bethel allocation is not very different from the 

Forest Loss Neyman allocation and this similarity is reflected in the closeness of the resulting 

standard errors for estimating Forest Loss (0.064 for Neyman optimal, 0.067 for Bethel).  
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Table 10. Sample allocations and standard errors for real population R1. 

Stratum 

Ph Optimal 

Propor

tional 
Equal Bethel SSW 

 

Forest 

Loss 

Savannah 

Loss 

Neyman 

Forest 

Loss 

Neyman 

Savanna

h Loss 

Avg 

Opt 
 

1 0.0252 0.0005 4872 281 2577 1984 1250 4974 1629  

2 0.0003 0.0335 976 4412 2694 3882 1250 1053 3635  

3 0.0037 0.0146 2585 2073 2329 2732 1250 2798 1904  

4 0.0087 0.0087 167 67 117 115 1250 183 78  

5 0.0588 0.0588 63 25 44 17 1250 43 29  

6 0.4819 0.1205 650 171 410 83 1250 208 257  

7 0.0010 0.7383 506 2897 1701 1043 1250 547 2383  

8 0.0075 0.0075 181 73 127 134 1250 196 85  

Total 10000 10000 10000 9990 10000 10000 10000 SRS 

SE (Forest Loss) 0.064 0.193 0.076 0.092 0.102 0.067 0.093 0.102 

SE (Savannah Loss) 0.310 0.158 0.189 0.195 0.254 0.299 0.169 0.294 

 

Table 11 shows the results of our sample size for the different allocation methods used 

for the real population R17. Both classes a and b had smaller standard errors when using the 

Optimal, Bethel, or SSW allocation methods compared to the standard errors of SRS. The 

sample size distribution was very different for the various allocation methods. The two optimal 

Neyman allocations were notably different in several strata (4, 5, 7). In this example, Bethel 

and SSW allocations differed substantially in strata 1, 2, 3, and 4. The Bethel allocation was 

not very different from the Neyman allocation for the rarer class Degradation Low, except for 

strata 1, 2, and 3, which may be reflected in the resulting standard errors (0.058 for optimal 

Neyman, 0.070 for Bethel). On the other hand, for Deforestation the Bethel allocation differed 

substantially from the Neyman allocation in most strata and the result of this difference was a 

much smaller standard error of 0.029 for optimal Neyman versus a standard error of 0.065 for 

the Bethel allocation. The SSW allocation was not very different from the Neyman allocation 

in both target classes and the near similarity in sample allocation was reflected in the closeness 

of the standard errors. 
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Table 11. Sample allocations and standard errors for real population R17. 

Stratum 

Ph Optimal 

Propor

tional 
Equal Bethel SSW 

 

Degradation 

Low 

Defores

tation 

Neyman 

Degradation 

Low 

Neyman 

Deforesta

tion 

AvgO

pt 
 

1 0.0400 0.4133 711 3557 2134 211 1250 349 1567  

2 0.2494 0.0324 229 187 208 31 1250 51 202  

3 0.3277 0.0084 958 371 665 119 1250 197 796  

4 0.1607 0.1607 39 78 59 6 1250 10 45  

5 0.0533 0.0133 41 41 41 11 1250 18 37  

6 0.0019 0.0132 397 2091 1244 536 1250 464 915  

7 0.0023 0.0001 7402 3228 5315 8932 1250 8649 6179  

8 0.0058 0.0058 224 447 335 172 1250 263 259  

Total 10000 10000 10000 10018 10000 10000 10000 SRS 

SE (Degradation Low) 0.058 0.083 0.065 0.081 0.124 0.070 0.061 0.089 

SE (Deforestation) 0.052 0.029 0.033 0.080 0.044 0.065 0.037 0.099 

Table 12 shows the results of different allocation methods for real population R5. 

Population R5 is an interesting case because both classes comprise less than 1% of the area. 

However, the strata are very beneficial because the standard errors for proportional allocation 

were substantially smaller than the standard errors for SRS. Further, the Average Optimal, 

Bethel, and SSW allocations yield nearly the same standard errors with each other but had 

substantially smaller standard errors than proportional allocation and SRS. The two separate 

Neyman allocations differed by approximately 10% in each of strata 2 and 3. For example, in 

stratum 2, 10.15% was optimal for the class Coverage Change, while 22.16% was optimal for 

the Change of Condition class. The Bethel and SSW allocations were different by about 7% in 

strata 2 and 3, and the Average Optimal allocation was almost the same as that of Bethel and 

SSW. The great similarity in these assignments resulted in the standard errors of the optimal 

methods being very close to each other. 
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Table 12. Sample allocations and standard errors for real population R5. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Cover 

Change 

Condition 

Change 

Cover 

Change 

Condition 

Change 
AvgOpt  

1 0.6429 0.1429 567 365 466 14 3333 420 458  

2 0.0270 0.7973 1015 2216 1616 74 3333 1031 1770  

3 0.0001 0.0001 8418 7419 7918 9915 3333 8550 7771  

Total 10000 10000 10000 10003 10000 10000 10000 SRS 

SE (Cover Change) 0.0012 0.0012 0.0012 0.0025 0.0017 0.0012 0.0012 0.0035 

SE (Condition Change) 0.0014 0.0013 0.0014 0.0038 0.0018 0.0014 0.0014 0.0078 

3.2. Real populations - comparison of standard error ratios for different 

allocations 

The Bethel method (Table 13) provides the total sample size n needed to achieve the 

CV values specified for the estimates targeted by the optimization. There is notable variability 

in this required sample size (n) for each population. The target Coefficient of Variation (CV) 

for the Bethel allocation was 0.05 for both classes a and b. Under this condition of equal CV, 

the Bethel allocation was strongly influenced towards the smaller (rarer) class. This influence 

was evident from the result that the actual CVs achieved by the Bethel allocation were 0.05 

(the target CV) for class a (with one exception, the R10 case) whereas the CVs for class b were 

often smaller than 0.05. This suggests that achieving a CV of 0.05 for the rarer class was the 

primary driver (i.e., the more difficult requirement) for the optimization. For the Bethel 

allocation, the standard errors (SE) tended to be smaller for class a compared to class b when 

the same CV of 0.05 was assigned to both target classes. 
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Table 13. Bethel allocation CVs and SE.  

Source  

(Population) 

# 

Strata 

% Area 
Bethel Target SE% 

for Bethel when 

CV=0.05 
CV 

(n=10,000) n 

Actual CV 

(required  n) 

a b a b a b a b 

R1 8 1.05 9.54 0.06 0.03 14,248 0.050 0.027 0.05 0.48 

R2 8 2.05 8.54 0.04 0.03 3,996 0.050 0.050 0.10 0.43 

R3 8 0.82 4.50 0.06 0.04 9,884 0.050 0.050 0.04 0.23 

R4 5 0.75 4.81 0.07 0.04 16,864 0.050 0.028 0.04 0.24 

R5 3 0.12 0.62 0.01 0.002 33,362 0.050 0.011 0.01 0.03 

R6 7 1.94 3.02 0.03 0.03 3,153 0.050 0.050 0.10 0.15 

R7 4 2.39 4.23 0.06 0.05 14,632 0.050 0.037 0.12 0.21 

R8 6 1.62 3.13 0.06 0.02 14,091 0.050 0.017 0.08 0.16 

R9 8 1.82 4.50 0.02 0.02 2,310 0.050 0.050 0.09 0.23 

R10 4 0.29 2.17 0.07 0.02 13,838 0.001 0.050 0.01 0.11 

R11 6 0.34 5.02 0.10 0.02 17,926 0.050 0.017 0.02 0.25 

R12 4 1.12 2.01 0.05 0.04 8,533 0.050 0.050 0.06 0.10 

R13 7 0.35 3.02 0.10 0.03 18,217 0.050 0.025 0.02 0.15 

R14 8 0.82 1.82 0.06 0.03 9,835 0.050 0.030 0.04 0.09 

R15 4 0.30 1.81 0.17 0.07 78,941 0.050 0.023 0.02 0.09 

R16 8 0.83 1.00 0.04 0.03 4,817 0.050 0.050 0.04 0.05 

R17 8 0.80 1.00 0.09 0.07 20,775 0.050 0.035 0.04 0.05 

“Actual CV” is the CV for each target class for the sample size n required to achieve a CV of 

0.05 or smaller, and CV (n=10,000) is the CV for the benchmark sample size used to compare 

allocation methods.  

In Table 14, the ratios of the SEs obtained from the Bethel, SSW, and Average Optimal 

methods are presented. Ratios less than or equal to 0.90 are highlighted in red and those greater 

than or equal to 1.10 are highlighted in yellow to indicate an advantage of at least 10% for one 

of the allocation methods. For example, considering the Bethel/SSW ratio, any cell in red 

indicates that the Bethel allocation performed at least 10% better than SSW (i.e., ratio less than 

0.90) while any cell in yellow indicates that SSW had an advantage of at least 10% over Bethel 

(i.e., ratio greater than 1.10).  
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For the Bethel/SSW ratio and class a, Bethel performed substantially better than SSW 

for only the first three populations, and there was only one case for class a where SSW 

performed better than Bethel. However, for class b, nine cases showed substantially better 

performance when using SSW compared to the Bethel allocation method. This indicates that 

SSW generally would be preferred over Bethel when estimating the larger class b area. 

For the ratios of standard errors for the Average Optimal and Bethel allocation methods, 

Bethel performed substantially better than AvgOpt in only one population in class a. Overall, 

there was often a substantial advantage to AvgOpt for both classes (a and b) compared to 

Bethel. In the comparison of AvgOpt with SSW, AvgOpt was substantially better in about half 

of the populations for class a and substantially better in only one case for class b. On the other 

hand, SSW had a large advantage over AvgOpt in three cases, all of which were in class b (the 

same three cases also observed as favorable to SSW in the Bethel/SSW ratio). As a general 

conclusion from these results, AvgOpt was preferable to Bethel when considering both classes 

a and b, whereas AvgOpt was preferable to SSW for class a and performed about the same as 

SSW for class b.   
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Table 14. Ratios of standard errors obtained from the different allocation methods for real 

populations. 

Source 
# 

Strata 

% Area 

Ratio 

Bethel/SSW 
AvgOpt/Bethe

l 
AvgOpt/SSW 

a b a b a b a b 

R1 8 1.05 9.54 0.72 1.76 1.14 0.63 0.82 1.11 

R2 8 2.05 8.54 0.81 1.08 0.95 1.05 0.77 1.13 

R3 8 0.82 4.50 0.84 1.54 0.98 0.72 0.83 1.12 

R4 5 0.75 4.81 0.95 1.15 1.01 0.89 0.96 1.02 

R5 3 0.12 0.62 0.98 1.07 1.01 0.94 0.99 1.01 

R6 7 1.94 3.02 1.01 1.00 0.97 1.02 0.98 1.02 

R7 4 2.39 4.23 1.02 0.99 0.98 1.00 1.00 1.00 

R8 6 1.62 3.13 1.02 1.19 1.00 0.81 1.02 0.96 

R9 8 1.82 4.50 1.05 1.00 0.81 1.05 0.86 1.05 

R10 4 0.29 2.17 1.05 1.11 0.92 0.98 0.97 1.09 

R11 6 0.34 5.02 1.05 1.28 0.77 0.85 0.81 1.09 

R12 4 1.12 2.01 1.08 1.02 0.89 1.01 0.96 1.03 

R13 7 0.35 3.02 1.08 1.29 0.78 0.84 0.84 1.07 

R14 8 0.82 1.82 1.08 1.53 0.94 0.64 1.01 0.98 

R15 4 0.30 1.81 1.05 1.07 0.91 0.95 0.96 1.02 

R16 8 0.83 1.00 1.08 1.10 0.94 0.91 1.01 0.99 

R17 8 0.80 1.00 1.14 1.78 0.94 0.50 1.06 0.89 

3.3. Experimental design populations - comparison of standard error ratios for 

different allocations 

From the descriptive statistics of the results of the standard error ratios from the 

populations of the designed experiment (Table 15), the mean value for the Bethel/SSW ratio in 

class b was 1.11 indicating that the SSW allocation had an 11% advantage over Bethel in class 

b. The mean value for the AvgOpt/Bethel ratio in class a was 0.88, indicating that the AvgOpt 

had a 12% advantage over Bethel in class a. The mean value for the AvgOpt/SSW ratio in class 

a was also 0.88. 
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Table 15. Summary statistics of the standard error ratios for the 32 populations of the designed 

experiment. 

Ratio Class Mean StDev Minimum Median Maximum 

Bethel/SSW 
a 1.01 0.06 0.88 1.00 1.11 

b 1.11 0.16 0.99 1.04 1.60 

AvgOpt/Bethel 
a 0.88 0.13 0.62 0.92 1.03 

b 0.97 0.13 0.66 0.99 1.12 

AvgOpt/SSW 
a 0.88 0.10 0.67 0.91 0.98 

b 1.05 0.03 1.01 1.04 1.12 

 

Similar to the results for the real populations, for the Bethel method (Table 16) there 

was substantial variability in the sample size required to achieve the target CVs. For the 

designed experiment, the populations labeled as c always required a larger sample size 

compared to those labeled as d. Additionally, populations with higher user’s and producer’s 

accuracy had a smaller required total sample size compared to those populations with lower 

accuracies. The Bethel allocation still showed a strong tendency towards the Neyman allocation 

of the smaller class a, except in 6 cases. These exceptions were all from the populations of the 

d type which were constructed to have a greater proportion of area in stratum 3. 
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Table 16. Bethel allocation results (Coefficients of variation) for the experimental design 

populations.  

Population 

Bethel 

CV (n=10,000) 
n 

Actual CV (Bethel = n) 

a b a b 

1c 0.074 0.038 6,179 0.050 0.033 

1d 0.044 0.030 2,473 0.043 0.050 

2c 0.074 0.038 6,126 0.050 0.037 

2d 0.032 0.020 1,205 0.050 0.050 

3c 0.074 0.032 6,173 0.050 0.026 

3d 0.044 0.028 2,317 0.050 0.050 

4c 0.074 0.026 6,179 0.050 0.023 

4d 0.030 0.018 1,032 0.050 0.050 

5c 0.053 0.035 3,815 0.050 0.044 

5d 0.039 0.029 2,335 0.042 0.050 

6c 0.053 0.032 3,841 0.050 0.041 

6d 0.028 0.017 1,095 0.050 0.041 

7c 0.053 0.031 3,791 0.050 0.039 

7d 0.039 0.027 2,178 0.048 0.050 

8c 0.053 0.023 3,815 0.050 0.029 

8d 0.026 0.014 949 0.050 0.041 

9c 0.067 0.038 6,146 0.050 0.033 

9d 0.041 0.032 2,711 0.040 0.050 

10c 0.067 0.038 6,093 0.050 0.037 

10d 0.033 0.023 1,529 0.050 0.050 

11c 0.067 0.032 6,140 0.050 0.026 

11d 0.042 0.030 2,561 0.050 0.050 

12c 0.067 0.026 6,146 0.050 0.023 

12d 0.031 0.020 1,337 0.050 0.050 

13c 0.045 0.035 3,805 0.050 0.044 

13d 0.034 0.032 2,689 0.039 0.050 

14c 0.045 0.032 3,820 0.050 0.041 

14d 0.028 0.023 1,474 0.050 0.050 

15c 0.045 0.031 3,781 0.050 0.039 

15d 0.035 0.030 2,534 0.045 0.050 

16c 0.045 0.023 3,805 0.050 0.029 

16d 0.026 0.020 1,255 0.050 0.050 

Highlighted values indicate cases for which the actual CV of class a was smaller than the 

specified target of 0.05. 
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In Table 17, the values obtained for the standard error ratios used to compare the effect 

of each allocation method are presented. For the Bethel/SSW ratio, there was only one case for 

class a where the Bethel allocation performed substantially better than SSW, while in two cases 

for class a SSW performed substantially better than Bethel. However, for class b, ten cases 

showed better standard errors when using SSW as the allocation method, and all of these cases 

belong to populations labeled as c. This indicates that, in this first ratio, SSW had an advantage 

over Bethel for the larger of the two rare classes (i.e., class b). 

For the standard error ratios comparing the AvgOpt and Bethel allocation methods, 

AvgOpt performed substantially better in 13 cases in class a and in 8 cases in class b, while 

Bethel performed better than AvgOpt in only 5 cases in class b. This overall demonstrates a 

general superiority for AvgOpt relative to Bethel for both classes (a and b). In the comparison 

of AvgOpt with SSW, AvgOpt demonstrated superior performance for class a. SSW 

substantially outperformed AvgOpt in only four cases, all of which were in class b. 
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Table 17. Ratios of standard errors obtained from the different allocation methods for 

populations of the designed experiment. 

Population 

Ratio 

Bethel/SSW AvgOpt/Bethel AvgOpt/SSW 

a b a b a b 

1c 1.02 1.18 0.94 0.87 0.96 1.02 

1d 1.08 1.00 0.70 1.10 0.75 1.10 

2c 0.98 1.59 0.97 0.66 0.95 1.05 

2d 0.92 1.04 0.99 1.00 0.91 1.04 

3c 1.05 1.04 0.93 0.97 0.98 1.01 

3d 1.07 1.00 0.65 1.12 0.70 1.12 

4c 1.04 1.24 0.95 0.82 0.98 1.02 

4d 0.88 1.08 1.00 0.98 0.88 1.06 

5c 1.00 1.08 0.89 0.96 0.89 1.03 

5d 1.10 1.00 0.69 1.08 0.76 1.08 

6c 1.01 1.33 0.91 0.79 0.92 1.05 

6d 0.97 1.01 0.96 1.01 0.92 1.03 

7c 1.03 1.01 0.89 1.01 0.91 1.02 

7d 1.11 1.00 0.66 1.10 0.73 1.10 

8c 1.07 1.11 0.89 0.93 0.95 1.02 

8d 0.96 1.05 0.97 0.98 0.93 1.03 

9c 0.97 1.18 0.99 0.87 0.97 1.02 

9d 1.07 1.00 0.69 1.10 0.74 1.10 

10c 0.92 1.60 1.03 0.66 0.95 1.05 

10d 0.97 1.00 0.90 1.05 0.87 1.05 

11c 1.00 1.05 0.98 0.96 0.98 1.01 

11d 1.08 1.00 0.62 1.12 0.67 1.12 

12c 0.98 1.25 1.00 0.82 0.98 1.02 

12d 0.91 1.02 0.90 1.06 0.82 1.08 

13c 0.96 1.08 0.97 0.95 0.92 1.02 

13d 1.09 1.00 0.69 1.08 0.75 1.07 

14c 0.93 1.34 0.99 0.78 0.92 1.05 

14d 1.01 1.00 0.86 1.04 0.87 1.04 

15c 0.98 1.02 0.96 1.00 0.94 1.01 

15d 1.10 1.00 0.64 1.09 0.70 1.09 

16c 0.99 1.12 0.97 0.91 0.96 1.02 

16d 0.95 1.01 0.89 1.05 0.84 1.06 

3.4. Correlation analysis 

Table 18 shows the results obtained from the correlation analysis for the real 

populations evaluated in this study. The table shows correlations separately for each of the two 
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target classes a and b. The correlations examine the association between the standard error 

ratios of the different allocation methods with several features of the populations: user's 

accuracy, producer's accuracy, overall accuracy, % area, "a-b" (which is the difference between 

the % area of the two target classes), and "SD ratio" which is the ratio of the standard deviations 

(square root of equation 2) of the two target classes. Each cell contains a correlation coefficient 

that measures the relationship between the standard error ratios and the population feature. 

Cells highlighted in yellow indicate the stronger correlations (positive or negative). The orange 

background indicates the highest values obtained in the analysis. The correlation values ranged 

from -0.74 to 0.82, suggesting moderate inverse (negative) correlations to strong direct 

(positive) correlations. 

For the Bethel/SSW ratio in class a, the correlations were generally low, suggesting 

little or no relationship with population features. However, the correlation of Bethel/SSW with 

“a-b” was 0.82 indicating that as the difference between the areas of classes a and b increased, 

the Bethel/SSW standard error ratio increased (i.e., a larger difference resulting in a larger ratio 

would favor SSW). For class b, the strongest correlations were a positive correlation of 0.40 

with producer's accuracy and a negative correlation of -0.37 with overall accuracy. Similarly 

the correlations of the standard error ratio of AvgOpt/Bethel did not have strong correlations 

with the population features as the two largest correlations both occurred with producer’s 

accuracy (classes a and b) but were only -0.34 and -0.44. The AvgOpt/SSW ratios had strong 

correlations with the "a-b" feature for both classes, this being positive for class a (0.81) and 

negative for class b (-0.74). These correlations suggest that the magnitude of the difference in 

percent area of the two rare target classes was strongly associated with the AvgOpt/SSW 

standard error ratios. There was also a strong positive correlation of 0.67 with % area for class 

b which would indicate that as the percent area of class b increased, the AvgOpt/SSW ratio 

increased (larger ratios would favor precision of SSW). Finally, for the SD Ratio feature, a 
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notable correlation for both classes were observed, this being negative for class a (-0.62) and 

positive for class b (0.64). 

Table 18. Correlations between population characteristics and standard error ratios for real 

populations. 

SE 

Ratio 

Correlation - Real Populations 

SE Ratio  

vs user's 
SE Ratio  

vs producer's 
SE Ratio  

vs overall 
SE Ratio  

vs  % Area 
SE Ratio  

vs a-b 
SE Ratio vs 

SD Ratio 

a b a b a b a b a b a b 

Bethel 

/SSW 
0.02 0.15 0.06 0.40 0.23 -0.37 -0.22 0.20 0.82 -0.30 -0.30 0.17 

AvgOpt

/Bethel 
-0.11 -0.16 -0.34 -0.44 -0.14 0.32 0.19 0.01 -0.23 0.08 -0.20 -0.05 

AvgOpt

/SSW 
-0.09 0.16 -0.24 -0.18 0.13 0.07 -0.04 0.67 0.81 -0.74 -0.62 0.64 

Table 19 shows the results obtained from the correlation analysis for the populations of 

the designed experiment. One difference in the correlation analysis of these populations versus 

the real populations was that the correlations of the standard error ratios with the population 

features % area, a-b (difference in area), and SD Ratio were not calculated because the area 

proportions of the two target classes were the same for all populations (class a has 0.01 and 

class b has 0.05).  

Correlation values range from -0.46 to 0.42, indicating moderate inverse correlations 

to moderate direct correlations. The correlations for these populations were smaller in 

magnitude than those for the real populations. For class a, the Bethel/SSW ratio was not 

strongly correlated with any of the population features, while for class b there was a moderate 

positive correlation with producer's accuracy (0.42). Similarly for class a and the 

AvgOpt/Bethel standard error ratios, the correlations with the accuracy features were small 

(0.10 was the largest). For class b, the AvgOpt/Bethel ratio had a correlation of -0.46 with 

producer's accuracy of class b. This would indicate that as the producer's accuracy of class b 
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increased, the AvgOpt/Bethel ratio would decrease (i.e., more advantage to AvgOpt). Finally, 

the correlations between the AvgOpt/SSW ratios and accuracy features were small for both 

target classes with only the correlation in class b (-0.25) of AvgOpt/SSW with producer’s 

accuracy having a magnitude greater than 0.10 in absolute value. 

Table 19.  Correlations for constructed populations. 

SE 

Ratio 

Correlation - Experimental Design 

SE Ratio vs 

user's 
SE Ratio vs 

producer's 
SE Ratio vs 

overall 

a b a b a b 

Bethel 

/SSW 
-0.17 -0.28 0.14 0.42 -0.12 -0.16 

AvgOpt

/Bethel 
0.07 0.23 -0.10 -0.46 0.09 0.10 

AvgOpt

/SSW 
0.00 -0.01 -0.05 -0.25 0.06 -0.04 

3.5. Regression analysis  

For this section it is important to recognize that a high 𝑅2 value does not necessarily 

imply that the model is suitable for making predictions or that the variables included are the 

most relevant; it simply indicates the proportion of the variability explained by the model. The 

purpose here is to examine the association of the standard error ratios with the full suite of 

population features together by using R2. Table 20 shows the results obtained from the multiple 

linear regression analysis for the real populations. The population features are the same ones 

used in the correlations shown in Table 18. The table shows the 𝑅2 values obtained from a 

regression analysis for three ratios: Bethel/SSW, AvgOpt/Bethel, and AvgOpt/SSW. These 

values are calculated for the two target classes a and b. Yellow cells highlight 𝑅2 values, 

possibly indicating greater relevance in the analysis. The 𝑅2 values range from 0.197 to 0.801, 

indicating the proportion of the variance in the dependent variable that is explained by the 

regression model. 
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The Bethel/SSW standard error ratios for class a had an 𝑅2= 0.705 with the features of 

the real populations indicating that 70.5% of the variability in the standard error ratios was 

explained by the population features. For class b 𝑅2 = 0.510, which indicates that 51% of the 

variability was explained by the model. The R2 values were smaller for the AvgOpt/Bethel 

ratios as class a had 𝑅2= 0.197 and class b had 𝑅2= 0.443. For the AvgOpt/SSW ratios and 

class a, 𝑅2= 0.801 was the strongest association observed. For class b we found 𝑅2= 0.643. For 

the real populations, the proportions of the two target classes appear to have a strong association 

with the standard error ratios.  

Table 20. 𝑅2 values for real populations. 

Ratio 

Real Populations 

𝑅2 

a b 

Bethel/SSW 0.705 0.510 

AvgOpt/Bethel 0.197 0.443 

AvgOpt/SSW 0.801 0.643 

Table 21 shows the results obtained from the regression analysis for experimental 

design populations. These R2 values were smaller than those observed for the real populations, 

perhaps reflecting the absence of the important influence of the target class proportions 

observed in the real populations. The largest R2 for the designed experiment was about 0.30 

indicating that the accuracy features (user’s, producer’s and overall) did not explain a large 

percent of the variability in the standard error ratios. 

In the Bethel/SSW ratio we have that the 𝑅2 of class a indicates a low fit of the model, 

while in class b we have that the R2 shows a moderate fit. For the AvgOpt/Bethel ratio, only 

class b shows a moderate fit. Finally, for the AvgOpt/SSW ratio, both classes do not show a 

substantial association between the standard error ratio and population features. 
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Table 21. 𝑅2 values for constructed populations. 

Ratio 

Experimental Design 

𝑅2 

a b 

Bethel/SSW 0.065 0.294 

AvgOpt/Bethel 0.025 0.301 

AvgOpt/SSW 0.007 0.094 

4. DISCUSSION 

The Average Optimal method proved to be an effective and easy to calculate option. 

Although the SSW method had some advantage over Average Optimal in a few cases, usually 

for the more common class b, the Average Optimal method performed as well or better than 

the Bethel and SSW methods in most cases. This suggests that in practical applications, the 

Average Optimal method would be a viable choice because of its simplicity and effectiveness.  

Cochran (1977, p.103 and Sec. 5A.1) noted that “the optima in the allocation problem 

are rather flat.” The stratum specific population Ph values (i.e., proportion of area of the target 

class in stratum h) are not known so a best guess of these values must be used in the optimal 

allocation calculations. The flat optimum provides assurance that if the Ph values are close to 

the true values, the sample allocation will not be too far from the optimum. The existence of 

an "optimal plane" has important implications for the practice of sample allocation. It suggests 

that researchers can have some flexibility in sample allocation without substantially 

compromising the precision of their estimates. This is particularly useful in situations where 

available data or logistical constraints limit the ability to achieve an exact optimal allocation. 

Furthermore, this flexibility can facilitate the implementation of simpler and less costly 

allocation strategies, without sacrificing the quality of the results. 



 

 

 

37 

This study used a single coefficient of variation (CV) value for both target classes in 

the Bethel method (i.e., equal CV for all target estimates) and the same importance weight for 

both classes in the SSW method. Furthermore, in the experimental design, the same areas in 

classes a and b were maintained in all populations with the different combinations of two levels 

of user’s and producer’s accuracies. This uniformity of conditions could represent a limitation 

in terms of generality of results. To obtain a more complete view of the performance of the 

Bethel and SSW methods, it would be valuable to explore different CV values and importance 

weights, as well as varying the areas in classes a and b of the designed experiment. This would 

allow evaluating how a broader range of factors influence the effectiveness of the allocation 

methods. Likewise, including additional real populations and a broader set of populations in 

the designed experiment would provide a broader basis for practical recommendations, 

allowing allocation strategies to be adapted to specific and diversified contexts. Another 

extension of this study would be to evaluate these allocation methods for 3 or 4 target classes 

instead of just 2 target classes which was the focus of the results presented. A few examples 

with more than 2 target classes are provided in the appendix to show some preliminary results. 

Three of the examples have 3 target classes and one example has 4 target classes.
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5. CONCLUSIONS 

This research investigated methods for optimally allocating a stratified random sample 

when estimating areas of two or more rare classes. In practice, users can choose an allocation 

method based on their preference for how the optimization is structured (e.g., Bethel focuses 

on achieving a specified CV whereas SSW minimizes the sum of the variance of the target 

estimates while allowing for specification of importance weights). Average Optimal is simple 

to compute as it requires applying the Neyman optimal allocation to each target estimate 

individually and then averaging those values over the set of target estimates. Based on the 

results of this study, the Average Optimal method generally demonstrated equal or better 

performance than the Bethel and SSW methods. Although this method lacks formal 

mathematical justification as the optimal approach (i.e., it assumes that "splitting the 

difference" between separate Neyman optimal allocations may offer a simple and effective 

solution for estimating two or more targets), it often yielded smaller standard errors than the 

Bethel and SSW allocations. For the comparison of Bethel and SSW, the SSW method was 

generally better and yielded smaller standard errors for the class with the larger percent area 

(in the two target class applications). Bethel allocation tended to be closer to Neyman allocation 

of the rarer class and therefore could yield smaller standard errors for the rarer class relative to 

the SSW allocation. Further analysis is recommended to fully evaluate these methods, 

particularly by exploring different approaches for the Bethel and SSW methods. Investigating 

how results are influenced by varying coefficients of variation (CV) in the Bethel method and 

different levels of importance weights in the SSW method could provide additional insights. 

 



 

 

 

39 

6. LITERATURE CITED 

Aryal, R. R., Wespestad, C., Kennedy, R., Dilger, J., Dyson, K., Bullock, E., Khanal, N., 

Kono, M., Poortinga, A., Saah, D., & Tenneson, K. (2021). Lessons learned while 

implementing a time-series approach to forest canopy disturbance detection in Nepal. 

Remote Sensing, 13(14), 2666. https://doi.org/10.3390/rs13142666 

Badjana, H., Olofsson, P., Woodcock, C., Helmschrot, J., Wala, K., & Koffi, A. (2017). 

Mapping and estimating land change between 2001 and 2013 in a heterogeneous 

landscape in West Africa: Loss of forestlands and capacity building opportunities. 

International Journal of Applied Earth Observation and Geoinformation, 63, 15–23. 

https://doi.org/10.1016/j.jag.2017.07.006 

Bethel, J. (1989). Sample allocation in multivariate surveys. Survey Methodology, 15(1), 

47–57. 

Chen, S., Olofsson, P., Saphangthong, T., & Woodcock, C. E. (2023). Monitoring shifting 

cultivation in Laos with Landsat time series. Remote Sensing of Environment, 288, 

113507. https://doi.org/10.1016/j.rse.2023.113507 

Chen, S., Woodcock, C. E., Bullock, E. L., Arévalo, P., Torchinava, P., Peng, S., & 

Olofsson, P. (2021). Monitoring temperate forest degradation on Google Earth Engine 

using Landsat time series analysis. Remote Sensing of Environment, 265, 112648. 

https://doi.org/10.1016/j.rse.2021.112648  

Cochran, W. G. (1977). Sampling Techniques (3rd edition). John Wiley & Sons. 

De Meo. (2022, October 12). Package ‘bethel.’ 

 https://cran.r-project.org/web/packages/bethel/bethel.pdf 

Department of Forestry Lao PDR. (2018). Activity Data Report for the ER Program of Lao 

PDR (p. 32). 

https://www.forestcarbonpartnership.org/system/files/documents/Annex%2010%20-

https://doi.org/10.3390/rs13142666
https://doi.org/10.3390/rs13142666
https://doi.org/10.1016/j.jag.2017.07.006
https://doi.org/10.1016/j.jag.2017.07.006
https://doi.org/10.1016/j.jag.2017.07.006
https://doi.org/10.1016/j.rse.2023.113507
https://doi.org/10.1016/j.rse.2023.113507
https://doi.org/10.1016/j.rse.2021.112648
https://doi.org/10.1016/j.rse.2021.112648
https://doi.org/10.1016/j.rse.2021.112648
https://cran.r-project.org/web/packages/bethel/bethel.pdf
https://www.forestcarbonpartnership.org/system/files/documents/Annex%2010%20-%20LaoPDR_ERPD%20AD%20%20Report_0323.pdf
https://www.forestcarbonpartnership.org/system/files/documents/Annex%2010%20-%20LaoPDR_ERPD%20AD%20%20Report_0323.pdf
https://www.forestcarbonpartnership.org/system/files/documents/Annex%2010%20-%20LaoPDR_ERPD%20AD%20%20Report_0323.pdf


 

 

 

40 

%20LaoPDR_ERPD%20AD%20%20Report_0323.pdf 

Dymond, J. R., Shepherd, J. D., Newsome, P. F., Gapare, N., Burgess, D. W., & Watt, P. 

(2012). Remote sensing of land-use change for Kyoto Protocol reporting: The New 

Zealand case. Environmental Science & Policy, 16, 1–8. 

https://doi.org/10.1016/j.envsci.2011.11.011 

Goetz, S. J., Hansen, M., Houghton, R. A., Walker, W., Laporte, N., & Busch, J. (2015). 

Measurement and monitoring needs, capabilities and potential for addressing reduced 

emissions from deforestation and forest degradation under REDD+. Environmental 

Research Letters, 10(12), 123001. https://doi.org/10.1088/1748-9326/10/12/123001 

Ministry of Agriculture and Forests  Forest National Corporation  REDD+ Programme. 

(2020). Republic of Sudan’s Forest Reference Level (FRL) Submission to the 

UNFCCC (p. 73). 

https://redd.unfccc.int/media/sudans_modified_frl_submission_webposting.pdf 

Ministry of Environment, Forest and Climate Change (MoEFCC) Government of the 

People’s Republic of Bangladesh. (2018). The submission of Bangladesh’s Forest 

Reference Level for REDD+ under the UNFCCC (p. 155). 

https://redd.unfccc.int/media/frl-report_revised_17_july2019_f.pdf 

Ministry of Natural Resources and Environment. (2020). Forest Reference Emission Level 

and Forest Reference Level Thailand (p. 137). 

https://redd.unfccc.int/media/thailand_frel_frl_report.pdf 

Neyman, J. (1934). On the Two Different Aspects of the Representative Method: The 

method of stratified sampling and the method of purposive selection. Journal of the 

Royal Statistical Society, 97(4), 558. https://doi.org/10.2307/2342192  

Olofsson, P., Arévalo, P., Espejo, A. B., Green, C., Lindquist, E., McRoberts, R. E., & 

Sanz, M. J. (2020). Mitigating the effects of omission errors on area and area change 

https://www.forestcarbonpartnership.org/system/files/documents/Annex%2010%20-%20LaoPDR_ERPD%20AD%20%20Report_0323.pdf
https://doi.org/10.1016/j.envsci.2011.11.011
https://doi.org/10.1016/j.envsci.2011.11.011
https://doi.org/10.1016/j.envsci.2011.11.011
https://doi.org/10.1088/1748-9326/10/12/123001
https://redd.unfccc.int/media/sudans_modified_frl_submission_webposting.pdf
https://redd.unfccc.int/media/sudans_modified_frl_submission_webposting.pdf
https://redd.unfccc.int/media/sudans_modified_frl_submission_webposting.pdf
https://redd.unfccc.int/media/frl-report_revised_17_july2019_f.pdf
https://redd.unfccc.int/media/frl-report_revised_17_july2019_f.pdf
https://redd.unfccc.int/media/frl-report_revised_17_july2019_f.pdf
https://redd.unfccc.int/media/thailand_frel_frl_report.pdf
https://redd.unfccc.int/media/thailand_frel_frl_report.pdf
https://redd.unfccc.int/media/thailand_frel_frl_report.pdf
https://doi.org/10.2307/2342192


 

 

 

41 

estimates. Remote Sensing of Environment, 236, 111492. 

https://doi.org/10.1016/j.rse.2019.111492 

Olofsson, P., Foody, G., Stehman, S., & Woodcock, C. (2013). Making better use of 

accuracy data in land change studies: Estimating accuracy and area and quantifying 

uncertainty using stratified estimation. Remote Sensing of Environment. 129. 122–

131. https://doi.org/10.1016/j.rse.2012.10.031 

Olofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. 

A. (2014). Good practices for estimating area and assessing accuracy of land change. 

Remote Sensing of Environment, 148, 42–57. 

https://doi.org/10.1016/j.rse.2014.02.015 

Särndal, C. E., & Lundström, S. (2005). Estimation in Surveys with Nonresponse. John 

Wiley & Sons. 

Särndal, C. E., Swensson, B., & Wretman, J. (1992). Model Assisted Survey Sampling. 

Springer New York. 

Stehman, S. V. (2013). Estimating area from an accuracy assessment error matrix. Remote 

Sensing of Environment, 132, 202–211. https://doi.org/10.1016/j.rse.2013.01.016 

Stehman, S. V., & Wagner, J. E. (2024). Choosing a sample size allocation to strata based 

on trade-offs in precision when estimating accuracy and area of a rare class from a 

stratified sample. Remote Sensing of Environment, 300, 113881. 

https://doi.org/10.1016/j.rse.2023.113881 

Wagner, J. E., & Stehman, S. V. (2015). Optimizing sample size allocation to strata for 

estimating area and map accuracy. Remote Sensing of Environment, 168, 126–133. 

https://doi.org/10.1016/j.rse.2015.06.027 

Wickham, J., Stehman, S. V., Sorenson, D. G., Gass, L., & Dewitz, J. A. (2023). Thematic 

accuracy assessment of the NLCD 2019 land cover for the conterminous United 

https://doi.org/10.1016/j.rse.2019.111492
https://doi.org/10.1016/j.rse.2012.10.031
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.1016/j.rse.2013.01.016
https://doi.org/10.1016/j.rse.2013.01.016
https://doi.org/10.1016/j.rse.2023.113881
https://doi.org/10.1016/j.rse.2023.113881
https://doi.org/10.1016/j.rse.2023.113881
https://doi.org/10.1016/j.rse.2015.06.027
https://doi.org/10.1016/j.rse.2015.06.027
https://doi.org/10.1016/j.rse.2015.06.027


 

 

 

42 

States. GIScience & Remote Sensing, 60(1), 2181143. 

https://doi.org/10.1080/15481603.2023.2181143 

Yang, X., Zhu, Z., Qiu, S., Kroeger, K. D., Zhu, Z., & Covington, S. (2022). Detection 

and characterization of coastal tidal wetland change in the northeastern US using 

Landsat time series. Remote Sensing of Environment, 276, 113047. 

https://doi.org/10.1016/j.rse.2022.113047 

7. APPENDICES 

7.1. Results for the more than 2 target classes 

Appendix 1 shows that Average Optimal and SSW methods generally achieve lower 

standard errors, suggesting more precise estimates, compared with the Proportional method, 

while Bethel does not present any important difference. Differences in sample sizes across 

strata suggest that each method has its specific strengths depending on the strata characteristics. 
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Appendix 1. Sample allocations and Area Percentages for Three Target Classes  

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Barren 

Land 
Water Wetland 30 10 90 

Avera

ge 
 

1 0.0021 0.9604 0.0163 197 1119 207 508 177 1250 209 319  

2 0.0014 0.0017 0.0035 542 795 328 555 602 1250 561 369  

3 0.6402 0.0264 0.0128 1182 525 105 604 101 1250 245 398  

4 0.0026 0.0004 0.0090 3139 1624 2194 2319 2510 1250 3251 2089  

5 0.0036 0.0004 0.0004 3305 1544 439 1763 2268 1250 3394 1150  

7 0.0001 0.0007 0.0193 272 1205 1755 1078 1384 1250 452 1475  

8 0.0004 0.0004 0.0100 1180 1568 2149 1633 2342 1250 1290 1844  

9 0.0001 0.0065 0.5943 183 1619 2824 1542 623 1250 598 2357  

Total 10000 10000 10000 10000 10006 10000 10000 10000 SRS 

SE (30) 0.041 0.054 0.087 0.049 0.064 0.057 0.048 0.057 0.090 

SE (10) 0.055 0.031 0.044 0.033 0.043 0.032 0.043 0.035 0.134 

SE (90) 0.268 0.127 0.108 0.125 0.152 0.140 0.174 0.113 0.207 

Wickham et al. (2023) case. Barren Land (area of 0.82%), Water (1.82%), and Wetland 

(4.50%). 

Appendix 2 shows that the average optimal method performed better for all three 

classes compared to proportional allocation, while SSW and Bethel do not represent a big 

advantage. 
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Appendix 2. Sample allocations and Area Percentages for Three Target Classes 

Stratum 

Ph Optimal 

Propor

tional 
Equal Bethel SSW 

 

Forest 

Loss 
Refores

tation 

Savan

nah 

Loss 

Forest 

Loss 
Refores

tation 

Sava

nnah 

Loss 
Average  

1 0.0252 0.0005 0.0005 4872 475 281 1876 1984 1250 1792 1438  

2 0.0003 0.0077 0.0335 976 3625 4412 3005 3882 1250 3230 3531  

3 0.0037 0.0146 0.0146 2585 3499 2073 2719 2732 1250 3233 2232  

4 0.0087 0.0087 0.0087 167 114 67 116 115 1250 118 84  

5 0.0588 0.0588 0.0588 63 43 25 44 17 1250 23 31  

6 0.4819 0.0120 0.1205 650 97 171 306 83 1250 113 228  

7 0.0010 0.0192 0.7383 506 1525 2897 1643 1043 1250 1363 2181  

8 0.0075 0.7463 0.0075 181 622 73 292 134 1250 127 274  

Total 10000 10000 10000 10000 9990 10000 10000 10000 SRS 

SE(Forest Loss) 0.064 0.153 0.193 0.084 0.092 0.102 0.091 0.095 0.102 

SE(Reforestation) 0.149 0.094 0.119 0.102 0.109 0.141 0.107 0.103 0.138 

SE(Savannah Loss) 0.310 0.178 0.158 0.183 0.195 0.254 0.187 0.170 0.294 

Badjana et al. (2017) RF Classification case. Forest Loss has a reference area of 1.05%, 

Reforestation has area of  1.94%, and Savannah Loss has area of 9.54%. 

In Appendix 3 it is observed again that both the Average Optimal method and the SSW 

have a better performance in the first two classes evaluated, but does not represent an advantage 

in the third class, while Bethel only shows a slight advantage in all classes. 
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Appendix 3. Sample allocations and Area Percentages for Three Target Classes 

Stratum 

Ph Optimal 

Propor

tional 
Equal Bethel SSW 

 

Forest 

Loss 
Refores

tation 

Savan

nah 

Loss 

Forest 

Loss 
Refores

tation 

Savan

nah 

Loss 
Average  

1 0.0065 0.0261 0.0007 2023 2040 185 1416 1533 1250 2106 1011  

2 0.0002 0.0131 0.0744 1108 4343 5658 3703 4571 1250 4482 4786  

3 0.0004 0.0044 0.0131 784 1261 1229 1091 2292 1250 1303 1115  

4 0.0044 0.0044 0.0044 245 125 71 147 225 1250 131 95  

5 0.0278 0.0278 0.0278 97 49 28 58 36 1250 52 37  

6 0.3321 0.0185 0.2583 4184 609 1119 1970 542 1250 629 1302  

7 0.0142 0.0285 0.4843 1363 975 1655 1331 702 1250 1008 1386  

8 0.0069 0.5556 0.0069 196 597 56 283 144 1250 289 269  

Total 10000 10000 10000 10000 10045 10000 10000 10000 SRS 

SE (Forest Loss) 0.061 0.113 0.125 0.074 0.121 0.087 0.111 0.088 0.142 

SE (Reforestation) 0.185 0.120 0.224 0.130 0.132 0.174 0.122 0.131 0.147 

SE (Savannah Loss) 0.386 0.246 0.212 0.240 0.251 0.368 0.243 0.223 0.279 

Badjana et al. (2017) SVM Classification case. Forest Loss (2.05%), Reforestation (2.22%), 

and Savannah Loss (8.54%). 
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 In Appendix 4, the Average Optimal and SSW methods demonstrate significantly better 

performance compared to the proportional method. In contrast, the Bethel method, while 

showing some advantages, does not perform as well as the other methods analyzed. 

Appendix 4. Sample allocations and Area Percentages for Three Target Classes 

Stratum 

Ph Optimal 

Propor

tional 
Equal Bethel SSW 

 

Degra

dation 

High 

Degra

dation 

Low 

Defores

tation 

Degra

dation 

High 

Degra

dation 

Low 

Defores

tation 
Average  

1 0.0533 0.0400 0.4133 2052 711 3557 2107 211 1250 349 1602  

2 0.2494 0.2494 0.0324 577 229 187 331 31 1250 51 259  

3 0.1049 0.3277 0.0084 1575 958 371 968 119 1250 197 890  

4 0.1607 0.1607 0.1607 99 39 78 72 6 1250 10 52  

5 0.0133 0.0533 0.0133 52 41 41 45 11 1250 18 38  

6 0.0019 0.0019 0.0132 999 397 2091 1162 536 1250 464 913  

7 0.0001 0.0023 0.0001 4081 7402 3228 4904 8932 1250 8649 5947  

8 0.0058 0.0058 0.0058 565 224 447 412 172 1250 263 298  

Total 10000 10000 10000 10000 10018 10000 10000 10000 SRS 

SE (Degradation High) 0.023 0.030 0.029 0.024 0.057 0.033 0.045 0.025 0.091 

SE (Degradation Low) 0.071 0.058 0.083 0.066 0.081 0.124 0.070 0.062 0.089 

SE (Deforestation) 0.034 0.052 0.029 0.033 0.080 0.044 0.065 0.037 0.099 

Submission of Bangladesh’s Forest Reference Level for REDD+ under the UNFCCC (2018) 

case. Degradation High (0.36%), Degradation Low (0.80%), and Deforestation (1.00%). 

As shown in Appendix 5, it is suggested that Bethel and Sarndal do not exhibit any 

advantage as allocation methods when dealing with three target classes, compared to Average 

Optimal, although SSW performs better than Bethel. 
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Appendix 5. Ratios of standard errors obtained from the different allocation methods for real 

populations with 3 target classes. 

Source 
% Area 

Ratio 

Bethel/SSW AvgOpt/Bethel AvgOpt/SSW 

a b c a b c a b c a b c 

Wickham et al. (2023) 0.82 1.82 4.50 0.85 1.21 1.54 1.01 0.76 0.72 0.86 0.92 1.11 

Badjana et al. (2017) RF 

Classification 
1.05 1.94 9.54 0.95 1.04 1.10 0.93 0.96 0.98 0.88 0.99 1.08 

Badjana et al. (2017) SVM 

Classification 
2.05 2.22 8.54 1.27 0.93 1.09 0.67 1.07 0.99 0.85 0.99 1.07 

Bangladesh’s Forest Reference 

Level for REDD+ under the 

UNFCCC (2018) 
0.36 0.80 1.00 1.78 1.13 1.79 0.53 0.95 0.51 0.95 1.07 0.91 
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In the following case, four target classes were analyzed (Appendix 6). Average and SSW demonstrate better performance compared to the 

proportional method, and the standard errors produced by both methods are very similar. It could be suggested that SSW may yield better 

performance and results when dealing with rarer classes, although further analysis and testing of different weights for each class in the method 

would be needed.  
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Appendix 6. Sample allocations and Area Percentages for Four Target Classes 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Restora

tion 
Degra

dation 
Refores

tation 
Defores

tation 
Restoration Degradation Reforestation Deforestation Average 

 

1 0.0030 0.0327 0.0030 0.8631 323 616 211 2290 860 336 1667 359 838  

2 0.0333 0.6000 0.0333 0.0667 380 606 248 594 457 120 1667 184 459  

3 0.0315 0.0045 0.7252 0.0045 684 153 1143 295 569 222 1667 340 685  

4 0.6441 0.0169 0.1017 0.0339 498 79 206 212 249 59 1667 90 227  

5 0.0026 0.0089 0.0064 0.0013 7635 8266 7878 6072 7463 8535 1667 8494 7448  

6 0.0014 0.0014 0.0014 0.0014 479 280 313 538 403 738 1667 534 343  

Total 10000 10000 10000 10000 10000 10010 10000 10000 10000 SRS 

SE(Restoration) 0.057 0.068 0.059 0.065 0.058 0.070 0.107 0.063 0.059 0.085 

SE (Degradation) 0.103 0.097 0.107 0.108 0.100 0.109 0.198 0.104 0.100 0.126 

SE (Reforestation) 0.089 0.114 0.087 0.107 0.092 0.105 0.169 0.096 0.091 0.149 

SE (Deforestation) 0.076 0.063 0.091 0.050 0.057 0.079 0.081 0.075 0.058 0.174 

Activity Data Report for the ER Program of Lao PDR (2018) case. Restoration has an area of 0.73%, Degradation has area of 1.62%, Reforestation 

has area 2.28%, and Deforestation has area 3.13%. 
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In Appendix 7, we observe that no notable advantages are shown between the methods. 

However, it is recommended to conduct more population studies and consider different 

characteristics of each method, such as varying CVs for the Bethel method. 

Appendix 7. Ratios of standard errors obtained from the different allocation methods for real 

populations with 4 target classes. 

Source 
% Area 

Ratio 

Bethel/SSW AvgOpt/Bethel AvgOpt/SSW 

a b c d a b c d a b c d a b c d 

LAO 0.73 1.62 2.28 3.13 1.08 1.03 1.06 1.30 0.92 0.97 0.96 0.76 1.00 1.00 1.01 0.99 

 

7.2. Sample allocations for Real Populations R1-R17 (see Table 9 for details of 

each population)  

Appendix 8. Population R2. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Forest 

Loss 

Savannah 

Loss 

Forest 

Loss 

Savannah 

Loss 
Average  

1 0.0065 0.0007 2023 185 1104 1533 1250 1039 551  

2 0.0002 0.0744 1108 5658 3383 4571 1250 4060 5109  

3 0.0004 0.0131 784 1229 1007 2292 1250 962 1127  

4 0.0044 0.0044 245 71 158 225 1250 135 90  

5 0.0278 0.0278 97 28 62 36 1250 54 36  

6 0.3321 0.2583 4184 1119 2651 542 1250 2275 1482  

7 0.0142 0.4843 1363 1655 1509 702 1250 1367 1534  

8 0.0069 0.0069 196 56 126 144 1250 108 72  

Total 10000 10000 10000 10045 10000 10000 10000 SRS 

SE (Forest Loss) 0.061 0.125 0.071 0.121 0.087 0.075 0.092 0.142 

SE (Savannah Loss) 0.386 0.212 0.245 0.251 0.368 0.233 0.216 0.279 
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Appendix 9. Population R3. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Barren 

Land 
Wetland 30 90 Average  

1 0.0021 0.0163 197 207 202 177 1250 209 188  

2 0.0014 0.0035 542 328 435 602 1250 561 332  

3 0.6402 0.0128 1182 105 643 101 1250 245 394  

4 0.0026 0.0090 3139 2194 2666 2510 1250 3251 2139  

5 0.0036 0.0004 3305 439 1872 2268 1250 3394 1136  

7 0.0001 0.0193 272 1755 1014 1384 1250 452 1507  

8 0.0004 0.0100 1180 2149 1665 2342 1250 1290 1882  

9 0.0001 0.5943 183 2824 1503 623 1250 598 2422  

Total 10000 10000 10000 10006 10000 10000 10000 SRS 

SE (30) 0.041 0.087 0.048 0.064 0.057 0.048 0.058 0.090 

SE (90) 0.268 0.108 0.126 0.152 0.140 0.174 0.113 0.207 

Appendix 10. Population R4. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

New 

Plantation 

Defores

tation 

New 

Plantation 

Defores

tation 
Average 

 

1 0.0002 0.0021 1403 1457 1430 4771 2000 1428 1441  

2 0.0100 0.0500 2204 1578 1891 1090 2000 2241 1636  

3 0.0061 0.0517 5686 5294 5490 3600 2000 5782 5292  

4 0.0020 0.4668 450 1627 1039 491 2000 458 1541  

5 0.9091 0.0227 257 44 150 44 2000 92 89  

Total 10000 10000 10000 9996 10000 10000 10000 SRS 

SE (New Plantation) 0.049 0.054 0.050 0.062 0.069 0.050 0.052 0.086 

SE (Deforestation) 0.175 0.151 0.154 0.190 0.200 0.173 0.151 0.214 
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Appendix 11. Population R6. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Deg_re 
Deg_no

_re 
Deg_re 

Deg_no

_re 
Average 

 

1 0.0303 0.0303 104 72 88 33 1429 81 82  

2 0.1099 0.1099 522 364 443 91 1429 405 413  

3 0.3688 0.3254 4076 2764 3420 461 1429 3088 3185  

4 0.0076 0.6818 210 787 498 132 1429 681 642  

5 0.0034 0.0687 312 942 627 291 1429 816 776  

6 0.0029 0.0086 3419 4123 3771 3491 1429 3884 3825  

7 0.0002 0.0002 1358 948 1153 5493 1429 1045 1077  

Total 10000 10000 10000 9992 10000 10000 10000 SRS 

SE (Degradation 

w/Regeneration) 
0.055 0.059 0.056 0.114 0.080 0.058 0.057 0.059 

SE (Degradation no 

Regeneration) 
0.091 0.078 0.080 0.138 0.108 0.079 0.079 0.171 

Appendix 12. Population R7. 

Stratum 
Ph Optimal Propor

tional 
Equal Bethel SSW 

 

Gain Loss Gain Loss Average  

1 0.0977 0.0703 522 348 435 256 2500 450 420  

2 0.0311 0.1886 651 1135 893 546 2500 657 978  

3 0.0398 0.0550 3642 3284 3463 2711 2500 3670 3408  

4 0.0137 0.0236 5184 5233 5208 6488 2500 5222 5193  

Total 10000 10000 10000 10001 10000 10000 10000 SRS 

SE (Gain) 0.146 0.148 0.146 0.152 0.186 0.146 0.147 0.153 

SE (Loss) 0.192 0.188 0.189 0.198 0.237 0.192 0.189 0.201 
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Appendix 13. Population R8. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Degrada

tion 

Defores

tation 

Degra

dation 

Defores

tation 
Average 

 

1 0.0327 0.8631 616 2290 1453 336 1667 611 1154  

2 0.6000 0.0667 606 594 600 120 1667 218 585  

3 0.0045 0.0045 153 295 224 222 1667 160 187  

4 0.0169 0.0339 79 212 145 59 1667 84 116  

5 0.0089 0.0013 8266 6072 7169 8535 1667 8633 7617  

6 0.0014 0.0014 280 538 409 738 1667 293 341  

Total 10000 10000 10000 10010 10000 10000 10000 SRS 

SE (Degradation) 0.097 0.108 0.101 0.109 0.198 0.100 0.099 0.126 

SE (Deforestation) 0.063 0.050 0.052 0.079 0.081 0.065 0.055 0.174 

Appendix 14. Population R9. 

Stratum 
Ph Optimal Propor

tional 
Equal Bethel SSW 

 

Water Wetland 10 90 Average  

1 0.9604 0.0163 1119 207 663 177 1250 292 356  

2 0.0017 0.0035 795 328 562 602 1250 355 374  

3 0.0264 0.0128 525 105 315 101 1250 143 171  

4 0.0004 0.0090 1624 2194 1909 2510 1250 2141 2102  

5 0.0004 0.0004 1544 439 991 2268 1250 516 583  

7 0.0007 0.0193 1205 1755 1480 1384 1250 1711 1676  

8 0.0004 0.0100 1568 2149 1859 2342 1250 2097 2057  

9 0.0065 0.5943 1619 2824 2222 623 1250 2744 2682  

Total 10000 10000 10000 10006 10000 10000 10000 SRS 

SE (10) 0.031 0.044 0.033 0.043 0.032 0.040 0.038 0.134 

SE (90) 0.127 0.108 0.114 0.152 0.140 0.109 0.109 0.207 

Appendix 15. Population R10. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Defores

tation 

Affores

tation 

Defores

tation 

Afforest

ation 
Average  

1 0.0003 0.0003 2044 3449 2746 3559 2500 3582 2426  

2 0.9383 0.0014 54 385 220 28 2500 50 194  

3 0.0011 0.9711 377 407 392 216 2500 387 1058  

4 0.0003 0.0010 7525 5759 6642 6201 2500 5981 6322  

Total 10000 10000 10000 10003 10000 10000 10000 SRS 

SE (Deforestation) 0.017 0.021 0.018 0.021 0.023 0.019 0.018 0.054 

SE (Afforestation) 0.033 0.029 0.032 0.037 0.042 0.033 0.030 0.146 
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Appendix 16. Population R11. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Defores

tation 

Degrada

tion 

Defores

tation 

Degrada

tion 
Average 

 

1 0.6250 0.0313 657 66 361 32 1667 69 181  

2 0.0110 0.2198 402 446 424 91 1667 196 426  

3 0.0016 0.6874 1048 3349 2199 611 1667 1313 3120  

4 0.0345 0.0690 2244 869 1557 290 1667 623 994  

5 0.0003 0.0115 2506 4394 3450 3491 1667 3460 4129  

6 0.0002 0.0002 3143 876 2010 5492 1667 4339 1150  

Total 10000 10000 10000 10007 10000 10000 10000 SRS 

SE (Deforestation) 0.024 0.038 0.026 0.046 0.028 0.034 0.032 0.058 

SE (Degradation) 0.118 0.085 0.093 0.144 0.118 0.109 0.085 0.218 

Appendix 17. Population R12. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Forest 

Gain 

Defores

tation 

Forest 

Gain 

Defores

tation 
Average  

1 0.0050 0.6965 281 1071 676 201 2500 504 892  

2 0.5960 0.0066 1472 142 807 151 2500 379 717  

3 0.0003 0.0062 1124 2922 2023 3201 2500 2550 2468  

4 0.0031 0.0062 7124 5866 6495 6450 2500 6567 5923  

Total 10000 10000 10000 10003 10000 10000 10000 SRS 

SE (Forest Gain) 0.050 0.079 0.053 0.077 0.074 0.060 0.056 0.105 

SE (Deforestation) 0.111 0.086 0.092 0.102 0.115 0.090 0.089 0.140 

Appendix 18. Population R13. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Defores

tation 

Deg_no

_re 

Defore

station 

Deg_no

_re 
Average 

 

1 0.6061 0.0303 659 72 366 33 1429 73 201  

2 0.0110 0.1099 388 364 376 91 1429 202 353  

3 0.0022 0.3254 876 2764 1820 461 1429 1021 2554  

4 0.0076 0.6818 468 787 627 132 1429 292 736  

5 0.0344 0.0687 2166 942 1554 291 1429 645 1068  

6 0.0003 0.0086 2414 4123 3269 3491 1429 3446 3855  

7 0.0002 0.0002 3029 948 1988 5493 1429 4321 1233  

Total 10000 10000 10000 9992 10000 10000 10000 SRS 

SE (Deforestation) 0.024 0.037 0.027 0.048 0.03 0.034 0.031 0.059 

SE (Degradation no 

Regeneration) 
0.105 0.078 0.085 0.138 0.108 0.101 0.079 0.171 
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Appendix 19. Population R14. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Barren 

Land 
Water 30 10 Average  

1 0.0021 0.9604 197 1119 658 177 1250 219 634  

2 0.0014 0.0017 542 795 668 602 1250 601 592  

3 0.6402 0.0264 1182 525 854 101 1250 254 914  

4 0.0026 0.0004 3139 1624 2381 2510 1250 3464 2470  

5 0.0036 0.0004 3305 1544 2424 2268 1250 3648 2568  

7 0.0001 0.0007 272 1205 739 1384 1250 304 694  

8 0.0004 0.0004 1180 1568 1374 2342 1250 1307 1224  

9 0.0001 0.0065 183 1619 901 623 1250 204 903  

Total 10000 10000 10000 10006 10000 10000 10000 SRS 

SE (30) 0.041 0.054 0.045 0.064 0.057 0.048 0.044 0.090 

SE (10) 0.055 0.031 0.034 0.043 0.032 0.052 0.034 0.134 

Appendix 20. Population R15. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Gain Loss 
Forest 

Gain 

Forest 

Loss 
Average  

1 0.0010 0.0114 5028 6571 5800 6807 2500 6209 6296  

2 0.0041 0.0102 4428 2765 3596 3027 2500 3593 3002  

3 0.0070 0.5071 273 648 460 143 2500 170 602  

4 0.3731 0.0060 270 17 144 24 2500 28 99  

Total 10000 10000 10000 10001 10000 10000 10000 SRS 

SE (Gain) 0.044 0.054 0.045 0.051 0.059 0.049 0.047 0.054 

SE (Loss) 0.120 0.110 0.113 0.120 0.158 0.118 0.111 0.133 
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Appendix 21. Population R16. 

Stratum 

Ph Optimal 
Propor

tional 
Equal Bethel SSW 

 

Refores

tation 

Defore

station 

Refores

tation 

Defores

tation 
Average 

 

1 0.0267 0.4133 1171 3557 2364 211 1250 1417 2484  

2 0.0125 0.0324 118 187 152 31 1250 154 146  

3 0.0084 0.0084 373 371 372 119 1250 470 348  

4 0.0759 0.1607 57 78 67 6 1250 40 64  

5 0.0133 0.0133 41 41 41 11 1250 60 39  

6 0.0132 0.0132 2104 2091 2098 536 1250 2633 1963  

7 0.0001 0.0001 3248 3228 3238 8932 1250 4070 3030  

8 0.3930 0.0058 2887 447 1667 172 1250 1155 1927  

Total 9999 10000 9999 10018 10000 9999 10001 SRS 

SE (Reforestation) 0.029 0.046 0.031 0.075 0.041 0.033 0.031 0.091 

SE (Deforestation) 0.038 0.029 0.031 0.080 0.044 0.035 0.032 0.099 

7.3. Constructed matrices of the experimental design 

Appendix 22. Constructed matrix for population 1c. 

Population 1c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001 0.0039 0.0100 

2 0.0001 0.0300 0.0199 0.0500 

3 0.0039 0.0199 0.9162 0.9400 

Total  0.0100 0.0500 0.9400 1.0000 

Appendix 23. Constructed matrix for population 1d. 

Population 1d Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0039 0.0001 0.0100 

2 0.0039 0.0300 0.0161 0.0500 

3 0.0001 0.0161 0.9238 0.9400 

Total 0.0100 0.0500 0.9400 1.0000 
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Appendix 24. Constructed matrix for population 2c. 

Population 2c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001 0.0039 0.0100 

2 0.0001 0.0425 0.0282 0.0708 

3 0.0039 0.0074 0.9079 0.9192 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 25. Constructed matrix for population 2d. 

Population 2d Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0039 0.0001 0.0100 

2 0.0039 0.0425 0.0244 0.0708 

3 0.0001 0.0036 0.9155 0.9192 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 26. Constructed matrix for population 3c. 

Population 3c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001 0.0039 0.0100 

2 0.0001 0.0300 0.0052 0.0353 

3 0.0039 0.0199 0.9309 0.9547 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 27. Constructed matrix for population 3d. 

Population 3d Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0039 0.0001 0.0100 

2 0.0039 0.0300 0.0014 0.0353 

3 0.0001 0.0161 0.9385 0.9547 

Total 0.0100 0.0500 0.9400 1.0000 
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Appendix 28. Constructed matrix for population 4c. 

Population 4c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001 0.0039 0.0100 

2 0.0001 0.0425 0.0074 0.0500 

3 0.0039 0.0074 0.9287 0.9400 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 29. Constructed matrix for population 4d. 

Population 4d Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0039 0.0001 0.0100 

2 0.0039 0.0425 0.0036 0.0500 

3 0.0001 0.0036 0.9363 0.9400 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 30. Constructed matrix for population 5c. 

Population 5c Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0001 0.0056 0.0142 

2 0.0001 0.0300 0.0199 0.0500 

3 0.0014 0.0199 0.9145 0.9358 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 31. Constructed matrix for population 5d. 

Population 5d Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0056 0.0001 0.0142 

2 0.0014 0.0300 0.0186 0.0500 

3 0.0001 0.0144 0.9213 0.9358 

Total 0.0100 0.0500 0.9400 1.0000 
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Appendix 32. Constructed matrix for population 6c. 

Population 6c Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0001 0.0056 0.0142 

2 0.0001 0.0425 0.0282 0.0708 

3 0.0014 0.0074 0.9062 0.9150 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 33. Constructed matrix for population 6d. 

Population 6d Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0056 0.0001 0.0142 

2 0.0014 0.0425 0.0269 0.0708 

3 0.0001 0.0019 0.9130 0.9150 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 34. Constructed matrix for population 7c. 

Population 7c Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0001 0.0056 0.0142 

2 0.0001 0.0300 0.0052 0.0353 

3 0.0014 0.0199 0.9292 0.9505 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 35. Constructed matrix for population 7d. 

Population 7d Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0056 0.0001 0.0142 

2 0.0014 0.0300 0.0039 0.0353 

3 0.0001 0.0144 0.9360 0.9505 

Total 0.0100 0.0500 0.9400 1.0000 
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Appendix 36. Constructed matrix for population 8c. 

Population 8c Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0001 0.0056 0.0142 

2 0.0001 0.0425 0.0074 0.0500 

3 0.0014 0.0074 0.9270 0.9358 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 37. Constructed matrix for population 8d. 

Population 8d Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0056 0.0001 0.0142 

2 0.0014 0.0425 0.0061 0.0500 

3 0.0001 0.0019 0.9338 0.9358 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 38. Constructed matrix for population 9c. 

Population 9c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001 0.0010 0.0071 

2 0.0001 0.0300 0.0199 0.0500 

3 0.0039 0.0199 0.9191 0.9429 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 39. Constructed matrix for population 9d. 

Population 9d Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0010 0.0001 0.0071 

2 0.0039 0.0300 0.0161 0.0500 

3 0.0001 0.0190 0.9238 0.9429 

Total 0.0100 0.0500 0.9400 1.0000 
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Appendix 40. Constructed matrix for population 10c. 

Population 10c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001 0.0010 0.0071 

2 0.0001 0.0425 0.0282 0.0708 

3 0.0039 0.0074 0.9108 0.9221 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 41. Constructed matrix for population 10d. 

Population 10d Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0010 0.0001 0.0071 

2 0.0039 0.0425 0.0244 0.0708 

3 0.0001 0.0065 0.9155 0.9221 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 42. Constructed matrix for population 11c. 

Population 11c Reference 
Total 

Map strata 

 a b c 

a 0.0060 0.0001 0.0010 0.0071 

b 0.0001 0.0300 0.0052 0.0353 

c 0.0039 0.0199 0.9338 0.9576 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 43. Constructed matrix for population 11d. 

Population 11d Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0010 0.0001 0.0071 

2 0.0039 0.0300 0.0014 0.0353 

3 0.0001 0.0190 0.9385 0.9576 

Total 0.0100 0.0500 0.9400 1.0000 
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Appendix 44. Constructed matrix for population 12c. 

Population 12c Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0001 0.0010 0.0071 

2 0.0001 0.0425 0.0074 0.0500 

3 0.0039 0.0074 0.9316 0.9429 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 45. Constructed matrix for population 12d. 

Population 12d Reference 
Total 

Map strata 

 a b c 

1 0.0060 0.0010 0.0001 0.0071 

2 0.0039 0.0425 0.0036 0.0500 

3 0.0001 0.0065 0.9363 0.9429 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 46. Constructed matrix for population 13c. 

Population 13c Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0001 0.0014 0.0100 

2 0.0001 0.0300 0.0199 0.0500 

3 0.0014 0.0199 0.9187 0.9400 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 47. Constructed matrix for population 13d. 

Population 13d Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0014 0.0001 0.0100 

2 0.0014 0.0300 0.0186 0.0500 

3 0.0001 0.0186 0.9213 0.9400 

Total 0.0100 0.0500 0.9400 1.0000 
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Appendix 48. Constructed matrix for population 14c. 

Population 14c Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0001 0.0014 0.0100 

2 0.0001 0.0425 0.0282 0.0708 

3 0.0014 0.0074 0.9104 0.9192 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 49. Constructed matrix for population 14d. 

Population 14d Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0014 0.0001 0.0100 

2 0.0014 0.0425 0.0269 0.0708 

3 0.0001 0.0061 0.9130 0.9192 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 50. Constructed matrix for population 15c. 

Population 15c Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0001 0.0014 0.0100 

2 0.0001 0.0300 0.0052 0.0353 

3 0.0014 0.0199 0.9334 0.9547 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 51. Constructed matrix for population 15d. 

Population 15d Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0014 0.0001 0.0100 

2 0.0014 0.0300 0.0039 0.0353 

3 0.0001 0.0186 0.9360 0.9547 

Total 0.0100 0.0500 0.9400 1.0000 



 

 

 

64 

Appendix 52. Constructed matrix for population 16c. 

Population 16c Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0001 0.0014 0.0100 

2 0.0001 0.0425 0.0074 0.0500 

3 0.0014 0.0074 0.9312 0.9400 

Total 0.0100 0.0500 0.9400 1.0000 

Appendix 53. Constructed matrix for population 16d. 

Population 16d Reference 
Total 

Map strata 

 a b c 

1 0.0085 0.0014 0.0001 0.0100 

2 0.0014 0.0425 0.0061 0.0500 

3 0.0001 0.0061 0.9338 0.9400 

Total 0.0100 0.0500 0.9400 1.0000 

7.4. R code for Bethel method allocation 

 The following code provides an example of how to use the Bethel function in R. The 

specific example refers to the R13 case, which includes the data from Table 7 Chen et al. 

(2021). This dataset contains 7 strata, and the analysis focuses on two target classes: class a, 

representing Deforestation, and class b, representing Degradation no Regeneration. 

# Install devtools package to enable GitHub package installations 

install.packages("devtools") 

# Install SamplingStrata package from GitHub 

devtools::install_github("barcaroli/SamplingStrata") 

# Load the SamplingStrata library 
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library(SamplingStrata) 

# Read the dataset from the specified CSV file 

dataset <- read.csv("C:/Users/Fernanda/Documents/SUNY - ESF/TESIS/5. QUINTO 

EJERCICIO/Chen_etal_2021_Table_7.1_R.csv") 

# Select relevant columns from the dataset 

data <- subset(dataset, select = c(stratum, N, M1, M2, S1, S2, cens, cost, DOM1)) 

# Rename columns for clarity 

colnames(data) <- c("stratum", "N", "M1", "M2", "S1", "S2", "cens", "cost", "DOM1") 

# Define the Coefficient of Variation (CV) requirements for the domain 

cv <- data.frame(DOM = "DOM1", CV1 = 0.05, CV2 = 0.05, domainvalue = 1) 

errors <- cv[1, 1:4] 

# Determine the optimal sample size allocation across strata 

n <- bethel(data, errors, printa = TRUE, maxiter = 1000) 

# Print the resulting sample sizes for each stratum 

n 

7.5. CVS file example 

The following example provides an example of how to create the CVS file needed for 

Bethel analysis in R. The specific example refers to the R13 case, which includes the data from 
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Table 7 Chen et al. (2021). This dataset contains 7 strata, and the analysis focuses on two target 

classes: class a, representing Deforestation, and class b, representing Degradation no 

Regeneration. 

stratum,N,M1,M2,S1,S2,cens,cost,DOM1 

1,33,0.6060,0.0303,0.4886,0.1714,0,1,1 

2,91,0.0109,0.1098,0.1042,0.3127,0,1,1 

3,461,0.0021,0.3253,0.0465,0.4685,0,1,1 

4,132,0.0075,0.6818,0.0867,0.4657,0,1,1 

5,291,0.0343,0.0687,0.1821,0.2529,0,1,1 

6,3491,0.0002,0.0085,0.0169,0.0923,0,1,1 

7,5493,0.0001,0.0001,0.0134,0.0134,0,1,1 
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