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ABSTRACT

Ecosystem nutrient budgets often report values for
pools and fluxes without any indication of uncer-
tainty, which makes it difficult to evaluate the
significance of findings or make comparisons across
systems. We present an example, implemented in
Excel, of a Monte Carlo approach to estimating
error in calculating the N content of vegetation at
the Hubbard Brook Experimental Forest in New
Hampshire. The total N content of trees was esti-
mated at 847 kg ha-1 with an uncertainty of 8%,
expressed as the standard deviation divided by the
mean (the coefficient of variation). The individual
sources of uncertainty were as follows: uncertainty
in allometric equations (5%), uncertainty in tissue
N concentrations (3%), uncertainty due to plot
variability (6%, based on a sample of 15 plots of
0.05 ha), and uncertainty due to tree diameter
measurement error (0.02%). In addition to allow-
ing estimation of uncertainty in budget estimates,

this approach can be used to assess which mea-
surements should be improved to reduce uncer-
tainty in the calculated values. This exercise was
possible because the uncertainty in the parameters
and equations that we used was made available by
previous researchers. It is important to provide the
error statistics with regression results if they are to
be used in later calculations; archiving the data
makes resampling analyses possible for future
researchers. When conducted using a Monte Carlo
framework, the analysis of uncertainty in complex
calculations does not have to be difficult and
should be standard practice when constructing
ecosystem budgets.

Key words: Monte Carlo; Hubbard Brook; forest
biomass; allometric equations; error analysis; eco-
system N budget.

LACK OF ERROR IN ECOSYSTEM BUDGETS

There are many sources of uncertainty in nutrient
budgets for forested ecosystems. Some sources of
uncertainty are well understood and commonly
reported, such as the variability reflected in repli-
cate plots. For systems of small stature, such as
grasslands or tundra, ecosystem nutrient stocks can
be assessed independently on multiple plots, and
reporting the variation across plots is sufficient to
describe the uncertainty in the estimates. Forest
nutrient budgets, however, require the use of
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allometric equations to estimate the biomass of tree
components. The uncertainty in these equations
should be included in estimates of uncertainty in
nutrient budgets, along with the uncertainty in
nutrient concentrations of tissues and the mea-
surement and sampling error. To our knowledge,
the uncertainty in all these components has never
been propagated through a calculation of nutrient
contents of a forest.
In principle, the uncertainty associated with any

calculation can be derived analytically from the
reported uncertainty in the components (Taylor
1996; Lo 2005). In practice, however, analytical
error propagation is problematic in situations
where the calculations are difficult to represent
mathematically or the coefficients of variation are
high (>30%) (Harmon and others 2007). Gaussian
error propagation uses partial derivatives to esti-
mate errors associated with changes in parameters,
but the slope is an inaccurate approximation of a
non-linear effect especially if the uncertainties are
large. Many of the equations used in ecosystem
budgets are non-linear. For example, allometric
equations for tree biomass are commonly loga-
rithmic (Jenkins and others 2003), and equations
that predict tree height from diameter may follow a
saturating function (Canham and others 1994).
One equation for forest floor mass involves a
combination of exponential decay and logistic
growth with six parameters (Covington 1981).
Monte Carlo simulation of error is an attractive

alternative to analytical solutions. It can be em-
ployed to propagate parameter uncertainty in any
set of equations. For equations of even moderate
complexity, the Monte Carlo approach requires
fewer assumptions and is far easier to implement
than analytical approaches (Press and others 1986,
p. 531). Monte Carlo propagation of uncertainty in
tree biomass equations has been applied to tropical
(Chave and others 2004), temperate hardwood
(Fahey and others 2005), and boreal coniferous
forests (Hermle and others 2010); temperate coni-
fer plantations (Sicard and others 2006); and oak
woodlands (Harmon and others 2007).
In the environmental sciences, there is a need for

better characterization of all aspects of data
uncertainties, for example, to better inform policy
decisions (Ascough and others 2008). Monte Carlo
simulation offers a tractable, flexible, and robust
approach. Our goal in this paper is to make the
calculation of error less daunting for ecosystem
scientists. With data from the Hubbard Brook
Experimental Forest in New Hampshire, USA, we
provide step-by-step instructions for calculating the
uncertainty in the nitrogen content of trees. We

use the Monte Carlo approach to incorporate the
reported errors of the components into the final
estimate. We include measurement uncertainty
and inter-plot variation to demonstrate how they
should be represented and to allow all these sour-
ces of uncertainty to be compared. To minimize
technical obstacles, we implement our example in a
common spreadsheet format (Excel, http://www.
microsoft.com), but note that this type of analysis
could be conducted using any of a variety of other
environments, such as R (http://www.r-project.
org), Matlab (http://www.mathworks.com), or SAS
(http://www.sas.com).

THE MONTE CARLO APPROACH

The Monte Carlo approach to estimating uncer-
tainty is conceptually straightforward (Press and
others 1986). The equations of interest are repeat-
edly evaluated using parameter values randomly
selected from their known (or assumed) probability
distributions. The random generation of the
parameters should ideally account for any covari-
ance structure in their joint probability distribu-
tions. After applying the equations many times, the
resulting large number of predictions can be used
to define the probability distribution of the propa-
gated error.

Uncertainty in the allometric relationships can be
represented in various ways. One approach is to
use the variation in the parameter estimates. For
example, parameters can be simulated by resam-
pling with replacement the original allometric data
(Chernick 2008). Alternatively, estimates can be
calculated for each iteration from the variance and
covariance matrix of the parameters (Sicard and
others 2006). However, neither the data nor the
joint probability distributions of the parameters are
typically available. Instead, error estimates are of-
ten provided for the dependent variables calculated
with the biomass equations (Jenkins and others
2003). Thus, an alternative approach is to use these
estimates of the model uncertainty (such as the
root mean square error of the residual) to perturb
the regression line by a randomly sampled amount
at each Monte Carlo iteration. In this section, we
illustrate the Monte Carlo procedure applied to a
single parameter (in the case of N concentration)
and to model uncertainty (in the case of height and
biomass).

The example we have chosen is estimating error
of the N content of aboveground biomass in the
northern hardwood forest at Hubbard Brook. This
calculation requires, for each tree species, equa-
tions relating tree height to diameter (Equation 1),
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equations relating the biomass of various tissue
types to height and diameter (Equation 2), and
estimates of tissue N concentration (Equation 3).
Specifically,

log Hð Þ ¼ aþ b log DBHð Þ þ eH ð1Þ

log Bið Þ ¼ mþ n log 0:5Hp DBH=2ð Þ2
! "

þ eBi
ð2Þ

NT ¼
X

i

Bi Ni þ eNi
ð Þð Þ ð3Þ

where H is the tree height; DBH is the tree diameter
at breast height (1.37 m); Bi is the biomass of tissue
i; NT is the total N in the tree; Ni is the concentra-
tion of N in tissue i; a, b, m, and n are parameters;
and !H, eBi

, and eNi
are residual errors for the height,

biomass equations, and the estimates of N con-
centration of tissue i, respectively. We have
estimates of the error associated with the N con-
centration of the tissues (rNi

) from Likens and
Bormann (1970). For the height and biomass
equations, Whittaker and others (1974) provided
estimates for rH and rBi

, rather than the standard
deviations of parameters a, b, m, and n; we there-
fore based the Monte Carlo analysis on the residual
error terms !H, eBi

, and eNi
. We assumed that these

error terms !H, eBi
, and eNi

were independent of one
another and normally distributed with a zero mean
and with standard deviations described under
‘‘Advice on Selecting Error Terms’’.
The estimation of the probability distribution of

NT requires generating random values for all the
error terms at each iteration of the Monte Carlo
(Figure 1). Then the reported diameters for the
trees and the parameters associated with the dif-
ferent species and tissue types can be used to
calculate a value of NT using Equations (1)–(3).
Repeating the calculation with new random num-
bers many times makes it possible to accumulate
estimates of the mean and variance and other sta-
tistics of interest of all previous Monte Carlo esti-
mates of NT. A sufficient sample size is achieved
when the mean and standard deviation settle to
acceptably constant values (Figure 2).

A CASE STUDY IMPLEMENTED IN EXCEL

We implemented the Monte Carlo approach to
error estimation of the N content of aboveground
biomass at Hubbard Brook Experimental Forest,
New Hampshire using Excel (Microsoft Excel 2002
and 2007 and Microsoft Excel X and 2008 for
Mac, Microsoft Corporation, Redmond, WA). In

addition to the uncertainty in the biomass equa-
tions (Equations 1 and 2) and the parameter
uncertainty associated with N concentrations
(Equation 3), our example includes the measure-
ment precision in tree diameters and the uncer-
tainty associated with sampling plots to characterize
the ecosystem.

We randomly selected plots from the network of
0.05-ha plots distributed across the Hubbard Brook
Valley (Schwarz and others 2003). We confined
our sampling to the plots in the northern hardwood
forest type (n = 140). All trees 9.5-cm DBH or

Identify species;
measure tree

diameters

Generate allometric
equations including

uncertainty

Monte Carlo simulation

Sample tree
diameters

Sample parameter
values

Calculate height of every tree

Calculate parabolic volumes

Calculate mass of tissue by type

Calculate N content of tissue

Sum biomass and N content by plot

Generate one estimate of the forest biomass N content by
sampling from the distribution defined by multiple plots

Add outcome to previous iterations

Enough
iterations? NoYes

Describe distribution
of results

Figure 1. Flowchart of the steps in the Monte Carlo
calculation of uncertainty in N content of a forest using
sample plots and the uncertainty in tree measurement,
allometric relationships, and tissue concentrations.
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greater were measured during 1994–1995 and
identified to species (Solomonoff 2007). We used
allometric equations constructed from trees sam-
pled at Hubbard Brook in 1965 (Whittaker and
others 1974) and tissue chemistry from trees sam-
pled in 1966–1967 (Likens and Bormann 1970).
We calculated parabolic volume from the measured
DBH and the predicted height (calculated using
DBH-height regressions reported in Whittaker and
others 1974). We use parabolic volume rather than
tree diameter to predict biomass at Hubbard Brook
because the relationship of tree height to diameter
can vary with elevation (Whittaker and others
1974).
The Excel workbook was organized to keep the

parameters (and randomly sampled error terms)
describing biomass and nutrient concentrations in
separate spreadsheets, organized by tissue type
and species. The calculations of tree and stand
biomass and nutrient contents were calculated on
a spreadsheet that started with the tree inventory
data in two columns, giving the species (important
as an index variable) and diameter of each tree.
This spreadsheet had columns for estimates of
biomass by tissue type, more columns for esti-
mated N content by tissue type, columns for the
sum of biomass and sum of N content, and hun-
dreds or thousands of rows for the trees. All of
these results changed with each iteration of the
Monte Carlo. At the bottom of the set of trees
representing each plot, we summed the values of
the biomass and N content estimates. A single
estimate of the ecosystem values was randomly
selected based on the mean and standard error of
these plots. To document the contribution of the
other sources of error to the uncertainty in N
content, we used 15 plots. We also used 5, 10, 20,
30, 40, or 60 plots, with all sources of error
included, to quantify the effect of sampling
intensity on the total uncertainty.
The entire sequence of calculations (Figure 1) is

carried out in Excel when any cell is changed. In
the Monte Carlo, because of the random number
queries, the estimates for each tree and the sums
for the plots all change with every update. To
accumulate multiple estimates of the ecosystem
values requires copying the values into a list of
results, which we did in a separate spreadsheet. The
error statistics can be computed from any number
of rows, and the values compared until the number
of iterations is sufficient to give a reproducible
result (Figure 2). In this example, 100 iterations
were enough to estimate the mean biomass and the
standard deviation with an uncertainty of about
1% of the mean.

UNCERTAINTY IN THE NITROGEN CONTENT

OF BIOMASS

Calculated without uncertainty, the N in biomass
in mid-elevation hardwoods at Hubbard Brook
averaged 847 kg ha-1, based on fifteen 0.05-ha
plots. Using the Monte Carlo approach to estimate
the uncertainty in tree measurement, allometric
equations, N concentrations, and plot variability,
we obtained a mean estimate of 869 kg ha-1 with a
standard deviation of 66 kg ha-1, or 8% of the
mean (Table 1 and Figure 2). The difference
between the N content without error and the
resampled mean reflects a bias in the resampling
procedures (less than 3% in this case). The mean of
the Monte Carlo estimates is higher than the mean
calculated without error, because of the logarithmic
equations for height and biomass.

In addition to Monte Carlo calculations that
combined all sources of error, we made calculations
with each source of error alone. The uncertainty in
the height of the trees (Equation 1) contributed 3%
uncertainty to the total N budget, expressed as the
standard deviation divided by the mean (the coef-
ficient of variation). The uncertainty in the biomass

Figure 2. Mean and standard deviation of N content of
aboveground vegetation at Hubbard Brook as a function
of the number of Monte Carlo iterations. The different
lines represent results from five independent Monte
Carlo simulations.
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equations (Equation 2) contributed 4% uncer-
tainty. The standard error of the N concentrations in
tissues (Equation 3) contributed 3%. Plot variability
contributed 6%, with a sample of fifteen 0.05-ha
plots. The measurement error of tree diameters
contributed only 0.02%. The sum of the individual
sources of error, reported in units of coefficient of
variation or kg N/ha (Table 1), is much greater than
the uncertainty from the Monte Carlo simulations
with all errors combined. The variance of a sum is
the sum of the variances (Taylor 1996); the sum of
standard deviations is not meaningful. In this case,
squaring the standard deviations of the errors of
individual sources and summing them approxi-
mates the square of the standard deviation of the
errors of combined sources.
We investigated the effect of sampling intensity

on uncertainty by selecting different numbers of
plots (Table 1). With only five plots, the uncer-
tainty in N contents of the ecosystem was 15%.
With 30–60 plots, it was 7%. Adding more plots
cannot reduce the uncertainty below that contrib-
uted by the other sources, which was 7%. Plot-
sampling error alone was only 3% with 60 plots.
The uncertainties associated with the allometric

equations describing tree biomass (Whittaker and
others 1974) are quite low; these equations were
among the best fit (93rd percentile) of 180 equa-
tions compiled by Jenkins and others (2004). Most
other allometric equations would contribute more
uncertainty to the nutrient content of vegetation
than our example shows.
TheMonte Carlo analysis can provide information

about which of the equations are most important to
improve, based on their effect on overall uncertainty
(Table 1). This is not the same as the uncertainty in
the individual equations, because some equations
are more important than others to the final result.
For example, although the uncertainty in the
equation for bark biomass is higher than that for
wood biomass (Whittaker and others 1974), this
uncertainty contributes less to the uncertainty in
total biomass N, because the wood contains somuch
more N than the bark. In this data set, branches have
both high uncertainty in the biomass equation and
high N content, and thus contribute the greatest
uncertainty (in kg N/ha) to the overall estimate of N
in biomass at Hubbard Brook (Table 1b).

ADVICE ON SELECTING ERROR TERMS

Selecting the appropriate component error terms
for an uncertainty analysis using Monte Carlo
simulation depends on the question being asked
(Harmon and others 2007). To describe the varia-

tion in the population or the uncertainty in esti-
mates of individuals, the standard deviation is the
appropriate term to use. To describe uncertainty in
the estimate of the population mean, the standard
error of the mean should be used.

The question that we addressed in our example
was the uncertainty in the ecosystem total of N in
trees, which is the uncertainty in the mean.
Therefore, we used the means and standard errors
of the N concentrations for the tissues of each
species to define the uncertainty in N concentra-
tions (Equation 3). This variation is smaller than
the measured variation in tissue concentrations
(the standard deviation). This choice is easy to
understand in the case of a single parameter.

For a regression equation, uncertainty is de-
scribed by the variation around the fitted equation.
The standard deviation of the dependent variable
based on the regression model, sy%x, is calculated as

Sy%x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yi & ŷið Þ2

n& 2

s

ð4Þ

where y refers to the dependent variable (log10 of
tree height or tissue biomass, in our example); yi is
the observed and ŷi is the predicted value of the ith
observation, and n is the number of observations
used to estimate the regression equation (Snedecor
and Cochran 1989, p. 162).

The uncertainty associated with regression pre-
dictions also depends on the value of the inde-
pendent variable x, in our case log10 (DBH). The
uncertainty described by the standard deviation of
the regression, Sy%x (Equation 4), describes the error
at the mean value of the observations in the
regression data set, !x: The uncertainty in predicting
y increases as values of x depart from this mean.
Finally, the uncertainty in the regression prediction
also depends on the number of observations in the
regression data set, n. For the error terms in
Equations (1) and (2), we used the error appro-
priate to an estimate of the mean of y at a specified
value of x, sm (Snedecor and Cochran 1989, p. 164):

sm ¼ sy%x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
þ ðx & !xÞ2
Pn

i¼1 ðxi & !xÞ2

s

ð5Þ

The uncertainty in predicting the value of y for an
individual from regression, sp, is larger, analogous
to the standard deviation compared to the standard
error (Snedecor and Cochran 1989, p. 166):

sp ¼ sy%x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1

n
þ ðx & !xÞ2
Pn

i¼1 ðxi & !xÞ2

s

ð6Þ
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The use of Equation (5) or (6) requires the number
of observations in the regression, the mean of the x
observations, and the sum of squared deviations of
the x, ðxi & !xÞ2. Because these statistics are not
commonly reported, some researchers have chosen
to represent the uncertainty in the biomass equa-
tions using only the standard deviation of the
regression (Equation 4) (Chave and others 2004;
Fahey and others 2005). This approach results in an
overestimate of the uncertainty in the population
mean (Equation 5), but an underestimate of the
uncertainty in the individual estimates (Equa-
tion 6).

ADVICE ON APPLYING ERROR TERMS

As a general rule, errors should be generated to
simulate the measurement and analytical proce-
dures. In this sense, every Monte Carlo iteration is
like a resampling of the study. For example, mea-
surement uncertainty applies independently for
each measurement. In our case study, we randomly
sampled the measurement uncertainty in DBH for
every tree in our sample. The errors are as likely to
be positive as negative, and they tend to cancel out.
In contrast, at each iteration, we simulated a single
set of allometric equations and a single set of
N-concentration parameters and applied them to
all the trees to estimate NT.
It is possible to select the right form of error but

to apply it incorrectly. A common mistake is to

apply parameter uncertainty independently for
each observation in the data set. To calculate
uncertainty in the ecosystem total, we are inter-
ested not in the variation from tree to tree, but in
the possible inaccuracy of the equation describing
the average tree. For example, consider the equa-
tion for the mass of the branches of a sugar maple
tree, which has high uncertainty. If this equation is
inaccurate, then this error applies equally to every
sugar maple tree in the sample. For this reason, we
sample the error terms in the table of parameters in
Excel, not in the list of trees. Each tree is calculated
with the same sample of the error term (or sample
of the parameter, in the case of nitrogen concen-
tration), until the next iteration of the Monte
Carlo.

The same argument applies when comparing
ecosystem totals across multiple plots or sites. It is
important to apply the parameter uncertainty
simultaneously for all observations at each iteration
of the Monte Carlo. Using the same example as
before, if Whittaker’s equation is in error about the
branches of sugar maple trees, it is equally so for all
the trees in the population. This source of error
does not contribute as much to the uncertainty in
detecting differences between plots or between
sites as it does to the uncertainty in the mean.

Our case study illustrates the sampling of multi-
ple plots. We used the same parameters, sampled
with error, at each iteration of the Monte Carlo,
and at each iteration, we estimated the ecosystem

Table 1. Uncertainty in Estimation of N Content of Trees at Hubbard Brook, Reported as (a) the Coefficient
of Variation (the Standard Deviation Divided by the Mean) and (b) kg N/ha of 100 Monte Carlo Iterations

Stem wood Stem bark Branches Leaves and twigs Roots Total biomass

(a) Coefficient of variation (%)
Diameter measurement 0.03 0.02 0.03 0.02 0.02 0.02
Height equations 3 3 3 2 3 3
Allometric equations 2 5 14 7 6 4
N concentration 5 3 4 2 7 3
Sampling error (15 plots) 8 7 7 5 6 6
All sources combined 9 8 14 9 11 8
All sources, 5 plots 18 13 22 12 18 15
All sources, 10 plots 11 9 20 10 12 10
All sources, 20 plots 8 8 16 10 11 8
All sources, 30 plots 8 7 16 10 10 7
All sources, 40 plots 8 7 15 10 9 7
All sources, 60 plots 7 8 17 10 10 7

(b) kg N/ha
Diameter measurement 0.04 0.002 0.06 0.01 0.06 0.01
Height equations 5 2 8 2 8 25
Allometric equations 3 4 34 6 16 39
N concentration 7 2 8 2 20 24
Sampling error (15 plots) 12 6 17 4 18 53
All sources combined 14 7 34 7 31 66
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total as a random sample based on the mean and
standard error of the plot totals. To compare two
sites each with multiple plots (not illustrated in this
paper), we would compute the t statistic for the site
difference at each iteration of the Monte Carlo, and
report the proportion of all iterations with a sig-
nificant t. To compare more than two sites, the
proportion of significant results of analysis of vari-
ance would be reported for many iterations. A
confidence of 95% in the difference across sites
would be indicated if more than 95% of the Monte
Carlo iterations produced a significant difference.
Designing a flowchart (Figure 1) can help to plan

the sequence of calculations. Using a programming
language would make the structure of the calcu-
lations more explicit than in Excel. The imple-
mentation of a Monte Carlo calculation is not
difficult; conceptualizing the approach to take is
more challenging.

SOURCES OF ERROR NOT INCLUDED IN THIS

EXAMPLE

We assumed, in this illustration, that the error in
each of the equations was independent of all the
others. This assumption certainly is not always
true. For example, in stream water fluxes, some
elements are at higher concentrations when water
flux is high, while others are diluted at high vol-
umes. Relationships among the parameters could
be included in a Monte Carlo simulation, by
sampling from a multivariate distribution, if these
relationships are known. Correlations among
parameters can also be treated mathematically
(Taylor 1996).
The propagation of error does not require that

the variables be normally distributed. We used a
normal distribution of error in this illustration,
consistent with the assumptions of Whittaker’s
regression models (Whittaker and others 1974). If a
distribution is known to be non-normal, then the
actual distribution should be used in the random
resampling procedure.
There are other sources of errors in measure-

ment, which are not addressed in this approach.
We have treated all the errors as random pertur-
bations with mean zero. Systematic errors, which
lead to bias, have not been accounted for. For
example, we represent minor species using the
equations developed for the major species, such as
the substitution of sugar maple for red maple
(Whittaker and others 1974). Regression equations
are commonly used at sites other than those at
which they were developed, which introduces

uncertainty not described by the uncertainty in the
regression model (Harmon and others 2007).

Laboratory procedures are prone to error; there
are some values of tissue concentration in the ori-
ginal Hubbard Brook data set (Likens and Bormann
1970), which were not borne out by later mea-
surements (Siccama and others 1994). Analytical
uncertainty is often not reported but is usually
small compared to variation across samples (in this
case, by tree; Likens and Bormann 1970).

Log-transformed equations like the ones we used
for estimating height (Equation 1) and biomass
(Equation 2) systematically underestimate the
values when back transformed (Baskerville 1972).
This bias can be corrected using the standard
deviation of the regression (Equation 4) and the
sample size, which are commonly reported (Spru-
gel 1983). Jenkins and others (2003) question
whether this correction factor is an improvement.
The decision regarding the correction factor is
important to the accuracy of nutrient budgets, but
it does not contribute to the uncertainty analysis.

CONCLUSIONS

Ecosystem biomass and nutrient budgets have
commonly reported sampling error derived from
replicate plots, but few have included in their error
analysis the uncertainty in allometric regressions or
nutrient concentrations. The variation across sam-
pling plots may be the largest source of uncertainty,
as shown in this example from northern hard-
woods and in our previous work in this forest type
(Fahey and others 2005) and in oak woodlands
(Harmon and others 2007). However, estimates of
uncertainty that exclude other sources of error are
biased, in that the true uncertainty is greater than
that reported when only the sampling error is
considered.

Propagating parameter and equation uncertainty
in ecosystem budgets is not difficult. When the
allometric equations we used here were published,
the authors wrote, ‘‘The problem of confidence
limits for treatment of forest samples by logarithmic
regression is unsolved’’ (Whittaker and others
1979). Since that time, advances in computing
technology have made it relatively easy to make
the necessary calculations on a personal computer,
using spreadsheets, computer programs, or spe-
cialized software. Designing an appropriate analysis
is probably more difficult than implementing it.

We contend that reporting uncertainty in the
result of ecosystem calculations should be standard
practice. It is important to the audience who will
make use of the result; it also has a benefit to
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researchers who want to know how best to im-
prove an estimate. When making use of results
reported by others, we often depend on reported
error statistics. In the case of regression equations,
we would ideally use not just the standard devia-
tion of the regression, but also the mean and sum
of squared deviations of the independent variable
(Equation 5 or 6). These can be calculated from
archived data, which are also necessary for resam-
pling approaches (Chernick 2008). Providing this
information will enable future users to properly
evaluate the uncertainty introduced by use of the
equations.
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APPENDICES

STEP-BY-STEP IMPLEMENTATION
IN EXCEL

In each iteration of the Monte Carlo, we accounted
for measurement error in the tree DBH measure-
ments (± 0.05 cm, Solomonoff 2007) by randomly

generating an error term for the DBH of each tree
(Figure 1). Specifically, the error term was a ran-
dom normal deviate with a mean of zero and rd of
0.05 cm. This error was calculated independently
for each tree in the inventory. This is the only
measured variable in this illustration; the other
variables are calculated from previously reported
parameters.

The next step of the calculation was to estimate
tree height as a function of diameter and species
(Equation 1). The tree species was used as an index
variable to look up the parameters a and b. The
error term for the DBH-height equation, !Hi, was
simulated as a random normal deviate with a mean
of zero and rH. In this implementation, rHi was
based on the reported error of the regression
(Whittaker and others 1974) corrected for the
sample size and the deviation of each tree from the
mean tree in Whittaker’s sample (Equation 5).

Unlike the error in tree diameter, which was
independently estimated for each tree, !Hi was used
for all trees of a given species in the data set for
each iteration of the Monte Carlo. An error in the
height equation affects all the trees simultaneously,
whereas an error in diameter measurement per-
tains to a single tree. In the Excel implementation,
this means that the parameter and equation errors
must be included in the lookup tables, so that for
each iteration of the ecosystem calculation, the
same random sample of each error is used.

Next, the height of each tree was used to calcu-
late its parabolic volume. The geometric formula
for parabolic volume, 0.5 Hp(DBH/2)2, was evalu-
ated without additional error terms.

To calculate the biomass of tree tissues as a func-
tion of parabolic volume (Equation 2), we used tree
species to index the parameter values in a lookup
table and error terms (!Bi) generated as random
normal deviates with a mean of zero and standard
deviation rbi. Similar to tree height, rbi was cal-
culated from the reported error of the regression
estimate (Whittaker and others 1974; Equation 5).
Then the N content of each tissue type (Equation 3)
was calculated from this biomass and the N con-
centration for each species and tissue type, which
was obtained from a final lookup table. Uncertainty
in N concentration was included as a random nor-
mal deviate with a mean of zero and rNi defined by
the reported standard error of the replicate tissue
samples (Likens and Bormann 1970).

For each of the plots in the sample of the eco-
system, the mass and nutrient contents by tissue for
all the trees in each plot were summed, with no
error added by summing. The mean and standard
error of these plots were used to randomly generate
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a single estimate of the ecosystem values, and the
results were accumulated in another spreadsheet in
which each line represented one iteration of the
Monte Carlo simulation.
The Excel workbook with our data and theMonte

Carlo results are available at http://www.esf.edu/for/
yanai/Uncertainty/Yanai_Ecosystem_Error.xls.

RANDOM NUMBER GENERATION

The random number generator in Excel, RAND(),
returns a number between 0 and 1 with even dis-
tribution. To generate the normal random error
estimates, we used NORMINV(RAND(), mean,
standard deviation), with the mean and standard
deviation referencing cells with those values.

LOOKUP TABLES IN EXCEL

It is important that each iteration of the Monte
Carlo apply the same error estimates for equa-
tions 1, 2, and 3 to all the trees in the data set. For
this reason, the random generation of errors cannot
be contained in the equations that are repeated in
each line of the stand inventory (calculating height
or biomass from DBH, for example). If the error
terms are generated in a parameter table, they will
change with each new calculation (iteration) but
they will be constant across all the trees in the
inventory.
We used the VLOOKUP function in Excel to

reference the parameters and the error terms in the
biomass equations and nutrient concentrations. In
our example, the parameters for height, biomass,
and nutrient concentration are each a table, with
tree species as the index variable. VLOOKUP re-
quires three arguments. The first gives the index
variable (the species of the tree). The second gives
the location of the table. The third specifies in
which column of the table you want to look up a
value. Note that the index variable must be in
alphabetical order.

TRICKS AND TOOLS IN EXCEL

The results of each iteration of the Monte Carlo are
copied and pasted (Edit, Paste Special, Values) into
a list of results where they will not be updated with
the next iteration. This process goes more quickly if
you add the ‘‘Paste Values’’ button to your toolbar.
Depending on your version, you might find this
under: Tools, Customize, Commands, Edit, Paste
Values. Or the sequence of menu selections may

be: View, Customize Toolbars and Menus. You can
also create a keyboard shortcut for this operation.

By default, Excel automatically recalculates the
value of every formula when any cell is changed.
This can take some time for thousands of trees.
When modifying a spreadsheet, you can turn this
feature off, in Excel Preferences, Calculations,
Manually. There is a keyboard shortcut to ‘‘calcu-
late now.’’ When running the Monte Carlo simu-
lations, you will need to turn the automatic
calculation back on.

We made many mistakes while building our
Monte Carlo spreadsheets. As always, it helps to
test the parts before assembling the whole. The
uncertainty in biomass and nutrient concentrations
can be implemented for a single tree, and the
sampled variance can be compared to the expected
variance. A spreadsheet that has only one tree
calculated many times with random error each
time can be useful for trouble-shooting. Graphing
the relationships represented by the component
equations can help to reveal unexpected problems.

You may find it useful to graph your outputs as a
function of the number of iterations (Figure 2).
Doing so for multiple independent Monte Carlo
runs allows you to visualize the rate of diminishing
uncertainty in your estimate of uncertainty.
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