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Quantifying Uncertainty in Forest
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Nutrient budgets for forested ecosystems have rarely included error analysis, in spite of the importance of uncertainty
to interpretation and extrapolation of the results. Uncertainty derives from natural spatial and temporal variation and
also from knowledge uncertainty in measurement and models. For example, when estimating forest biomass,
researchers commonly report sampling uncertainty but rarely propagate the uncertainty in the allometric equations used
to estimate tree biomass, much less the uncertainty in the selection of which allometric equations to use. Change over
time may have less uncertainty than a single measurement, if the measures are consistently biased, as by the use of
inaccurate allometric equations or soil sampling techniques. Quantifying uncertainty is not as difficult as is sometimes
believed. Here, we describe recent progress in quantifying uncertainty in biomass, soils, and hydrologic inputs and
outputs, using examples from the Hubbard Brook Experimental Forest, New Hampshire, USA.
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E
cosystem nutrient cycling is a rela-
tively new field of scientific inquiry,
compared to botany, soil science, or

silviculture. In the 1960s, Ovington (1962)
proposed the woodland ecosystem concept,
and the International Biosphere Project
(1964–1974) initiated the development of
allometric equations to describe forest bio-
mass and nutrient content (Aber and Melillo
1991). At the Hubbard Brook Experimental
Forest in New Hampshire, where the USDA
Forest Service was monitoring precipitation
and stream discharge in small headwater
catchments, Herb Bormann had the idea of
measuring the nutrient concentrations of

precipitation and stream water, and thereby
constructing a budget for ecosystem inputs
and outputs of nutrients (Bormann and
Likens 1967).

Forests pose special problems when it
comes to constructing ecosystem budgets. In
ecosystems of smaller physical stature, such
as grasslands, plots can be harvested and the
biomass weighed and sampled for nutrient
analysis. For a forest ecosystem, it is possible,
but not usually desirable, to estimate the
biomass and nutrient content by harvesting
(Arthur et al. 2001). More commonly, forest
biomass is estimated through the use of allo-
metric equations relating biomass to nonde-

structive measurements such as height and
diameter (Jenkins et al. 2004). Estimating
the nutrient content of forest biomass re-
quires allometric estimates by tissue type be-
cause the nutrient concentrations of wood,
leaves, and bark vary widely. Species differ in
their allometry and also in nutrient concen-
trations, such that mixed-species stands re-
quire dozens of parameters to describe the
biomass and nutrient concentrations of the
tissue types of each of the most prevalent
species (e.g., Whittaker et al. 1979).

Do Forest Nutrient Budgets Have
No Error?

In the 1960s, when biomass equations
were being developed and used for the first
generation of ecosystem budgets, there was
no attempt made to provide confidence
limits with the estimates. The publication
describing the biomass equations developed
at Hubbard Brook in 1965 was no excep-
tion. The authors wrote, “The problem of
confidence limits for treatment of forest
samples by logarithmic regression is un-
solved” (Whittaker et al. 1974, p. 241). It
was not true that the uncertainty associated
with regression was unknown to statisticians
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(Snedecor 1956), but to make use of this
information was beyond the computing ca-
pabilities available to most scientists at that
time.

Without confidence in these estimates,
or rather, without a quantitative evaluation
of uncertainty in the estimates, how is it pos-
sible to compare one measurement to an-
other? In the first nitrogen budget published
for Hubbard Brook (Bormann et al. 1977),
sources of N (6.5 kg ha21 yr21 in precipita-
tion) were compared to sinks for N (9.0 kg
ha21 yr21 in forest growth, 7.7 in forest
floor accumulation, and 4.0 in streamwater
outputs), and the difference, a shortfall of
14.2 kg ha21 yr21, was attributed to N fix-
ation. But each of these sources and sinks has
uncertainty, and the assumption that the
mineral soil was neither a source nor a sink
also has uncertainty.

It has been 35 years since the publica-
tion of that budget, and we don’t yet have an
answer as to the uncertainty in the budget
closure, which requires estimating the un-
certainty in all the sources and sinks for N,
including biomass, soils, and gaseous and
dissolved inputs and outputs of nutrients.

To our knowledge, there has yet to be a com-
plete uncertainty analysis published for any
forest nutrient budget. Gradually, research-
ers are developing approaches to quantifying
uncertainty in ecosystem studies.

In this paper, we illustrate current ap-
proaches to uncertainty analysis, using the

Figure 1. Sources of uncertainty in nutrient content of forest biomass. The estimates of measurement uncertainty, sampling uncertainty, and
error within models are from Hubbard Brook (Yanai et al. 2010). Uncertainty in the N concentration of tissues is due to analytical
uncertainty, which is a type of measurement error, as well as to variation among the trees sampled, which is due to natural variation.
Magnitudes of uncertainty are shown as the coefficient of variation.

Management and Policy Implications

The pools and fluxes of nutrients and other elements in forested ecosystems can be difficult to measure
and have commonly been reported without any indication of uncertainty in the results. Now forest
ecosystem scientists are developing methods for describing the uncertainty in ecosystem budgets.
Confidence intervals are important to determining the significance of findings, for example when reporting
change over time or differences following treatments. Identifying the most important sources of
uncertainty allows research and measurements to be focused where the need for information is greatest.
Environmental monitoring plans should be designed to best collect the information necessary to meet
management and policy goals.
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example of the N budget for the Hubbard
Brook Experimental Forest in New Hamp-
shire, USA. These examples have been de-
veloped through the efforts of a research
network called QUEST (Quantifying Un-
certainty in Ecosystem Studies). The aim of
QUEST is to promote the use of uncertainty
analysis, provide guidance to researchers in-
terested in uncertainty analysis, and support
both developers and users of uncertainty
analyses. QUEST has a website (www.
quantifyinguncertainty.org) with news feed,
relevant papers, and examples of code in
SAS, R, STATA, and Excel.

Sources of Uncertainty
In general, it is helpful to distinguish

categories of sources of uncertainty, some of
which arise from imperfect knowledge
(measurement uncertainty, model selection)
and some from inherent variability in the
system studied (sampling uncertainty in
space and time) (Harmon et al. 2007). In the
case of the nutrient content of forest bio-
mass, for example (Figure 1), measurement
uncertainty would include the uncertainty
in tree inventory (McRoberts et al. 1994)
and in the laboratory analysis of nutrient
concentrations (e.g., Buso et al. 2000). The
allometric models used to predict biomass
as a function of tree diameter have uncer-
tainty in the regression (Yanai et al. 2010),
and choosing which set of allometric equa-
tions to use introduces even greater un-
certainty (Melson et al. 2011). Model un-
certainty could be tested by harvesting
(Arthur et al. 2001) and reduced by sam-
pling greater numbers of trees. In contrast,
natural variability in space cannot be re-
duced by more intensive sampling, although
more sampling allows this variation to be
better described.

Uncertainty in Biomass Estimates—
Our First Success

Estimating uncertainty in the nutrient
contents of forest biomass is daunting be-
cause of the complexity of the calculations.
In the case of the Hubbard Brook budget for
Watershed 6 (W6) in 1965, there were 3987
trees in the inventory, biomass equations for
five tree species and five tissue types (Whit-
taker et al. 1974) and tissue chemistry for six
tree species and seven tissue types (Likens
and Bormann 1970). Fortunately, because
both the biomass equations and the tissue
chemistry are based on multiple trees, there
is a clear basis for describing the uncertainty
in all the equations and parameters in the

Figure 2. Uncertainty in the N contents of biomass at the Hubbard Brook Experimental
Forest, reflecting both uncertainty in allometric equations and in tissue N concentrations.
A. Monte Carlo results of N in biomass in 1965 for 100 iterations. B. Frequency distribution
of 1000 iterations of N in biomass in 1965, showing the 95% confidence interval in white
(from 562 to 671 kg N/ha).
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calculation. This uncertainty can be propa-
gated through thousands of calculations
without challenging the capacity of modern
desktop computers.

We used a Monte Carlo approach, in
which the entire calculation of biomass was
repeated many times, using random sam-
pling of the biomass and nutrient concen-
trations of tissue types, by species, using
the statistical distribution of the sampled
trees. Figure 2A shows the results of 100
such calculations applied to stand inventory
from W6 in 1965. The distribution of
1000 such results was analyzed to describe
the uncertainty in the calculations: the
mean was 566 kg N ha21, close to that re-
ported by Bormann et al. (1977) (their value
was 532 kg N ha21, which did not include
standing dead biomass), and the uncer-
tainty, which has never before been esti-
mated, showed a 95% confidence interval
ranging from 502 to 636 kg N ha21 (Figure
2B).

One reason that this type of result is
rarely reported is that although the uncer-
tainty in regression is well defined, the sta-
tistics needed to calculate it have not tra-
ditionally been reported with regression
results. The standard error of the estimate
(based on the sum of squared deviations of
the dependent variable) is commonly re-
ported, but not the mean of the independent
variables (tree diameter, in this case) or the
sum of squared deviations of the indepen-
dent variable from the mean. These latter
two statistics are important because the un-
certainty of the prediction increases for
observations farther from the mean of the
sampled population. In the case of forest
biomass, this means that uncertainty in
very large trees (larger than those on which
the allometric equations were derived) can
be large (Figure 3), which is important if
they represent a large fraction of the total
biomass.

Thus, although estimating uncertainty
in forest biomass should be straightforward,
it is often not possible to implement from
the information available. Some researchers
(Chave et al. 2004, Fahey et al. 2005, Har-
mon et al. 2007) have used the standard
error of the estimate (Equation 4 in Yanai et
al. 2010). However, this approach gives an
uncertainty about double that of the uncer-
tainty in the regression prediction (Equation
5 in Yanai et al. 2010), for the trees in our
survey.

Another issue that causes confusion in
uncertainty analysis of forest biomass is

whether to use the uncertainty in individual
estimates (described by the SD in the case of
an univariate distribution such as N concen-
tration) or the uncertainty in the population
mean (the standard error, for N concentra-
tion). When describing the population of
trees in an ecosystem, or calculating mass per
unit area, the standard error, or the analo-
gous measure of uncertainty in regression, is
the appropriate distribution to sample in a
Monte Carlo simulation. The uncertainty in
the mean represents the possibility of bias in
the estimate. It is important that each ran-
dom sample of the biomass estimates and N

concentrations be applied to all the trees in
the inventory. The random sampling should
not apply individually to each tree in the
inventory, as these errors would cancel out,
half being positive and half being negative.
With an infinite number of trees, applying
the uncertainty to each tree would result in
zero error. Clearly this is incorrect: our allo-
metric equations were based on 14–15 trees
of each species, and they do not become
more perfect estimates of the population
mean when they are applied to greater num-
bers of trees.

For errors that pertain independently

Figure 3. Uncertainty in biomass equations. A. Uncertainty in the equation describing sugar
maple biomass as a function of tree diameter (Whittaker et al. 1974). The first graph shows
the observations in the original units; the second graph shows the log-transformed data to
which the equation was fit. B. Comparison of two different models describing foliar biomass
of sugar maple from tree diameter (Whittaker et al. 1974, Hocker and Early 1983).
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to individuals, it is appropriate to apply a
random sample of the error to each tree.
This is the case with the measurement error
in diameter. We included measurement er-
ror in tree diameter in an earlier Monte
Carlo analysis and found it to amount to
only 0.0002 of the biomass or N content
estimate (0.02%, Yanai et al. 2010). To
identify the sources of uncertainty and how
they contribute to an estimate, it is helpful to
step through the methods used and consider
whether a measurement or model error ap-
plies to an individual measurement or to the
entire population (Harmon et al. 2007).

There are also other sources of uncer-
tainty not captured by propagating the er-
rors in the biomass equations and nutrient
concentrations. In the Hubbard Brook ex-
ample, there are species that were not de-
scribed by Whittaker, which are estimated
using equations for other species or from
other sites. This is an example of model se-
lection error, which can be very large. For
five tree species in northwestern Oregon,
models differed by 20–40% in estimates of
forest biomass (Melson et al. 2011). In New
Hampshire northern hardwoods, two sets of
allometric models differed by up to 72% for
a particular species, but these differences
cancelled out at the stand level (Fatemi et al.
2011). Applying multiple models can indi-
cate the possible magnitude of model selec-
tion uncertainty.

Sampling error is important in most es-
timates of uncertainty in forest inventory. In
the case of Hubbard Brook W6 tree inven-
tories (every 5 years since 1977), all trees
.10 cm diameter at breast height (dbh) are
measured, and sampling is not a source of
uncertainty. We simulated sampling uncer-
tainty by selecting plots (25 m 3 25 m) at
random (stratified by elevation) from the
208 plots in the 2002 survey, without in-
cluding uncertainty in the allometric equa-
tions (Figure 4). To estimate the mean
within 10% with 95% confidence would re-
quire ten plots, on average; 32 plots would
give an estimate within 5% of the mean
(Figure 5). However, increasing the number
of plots cannot make the estimate more ac-
curate than the uncertainty in the allometric
estimates of N content, which was 566 6 67
kg ha21, or 6 12% of the mean (Figure 2).

Uncertainty in Biomass Accumulation—
Inaccuracies Cancel Out

The analysis above describes uncer-
tainty in the amount of N in forest biomass.
For many purposes, the change in a nutrient

pool is more important than the size of
the pool. This is the case for balancing an
ecosystem budget, in which sinks and
sources of a nutrient are compared. Simi-
larly, for global carbon budgets, it is more
important to know the sink or source

strength of the biomass than to know the
size of carbon pools that are not changing.

At Hubbard Brook, the reference W6
has been measured every 5 years since 1977
(Siccama et al. 2007). Figure 6A shows the
results of 100 Monte Carlo estimates for the

Figure 4. Map of Hubbard Brook Watershed 6 divided into 208 plots; biomass for each plot
is from 2002. Yellow circles indicate a random sample of 20% of the plots, stratified by
elevation zone.
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1982 and 1987 inventory of W6, with the
uncertainty in allometry and N concentra-
tions sampled simultaneously for the two
sampling dates at each iteration. Note that
although the distributions of the two sam-
ples overlap, the 1987 value is without ex-
ception higher than the corresponding 1982
value from the same iteration of the Monte
Carlo. The uncertainty in the difference
over the 5-yr time interval is 6 13 kg N
ha21, Figure 6B. For budgeting N fluxes
in the ecosystem, the rate of N accumulation
in biomass has an uncertainty of 6 0.6 2

4.7 kg N ha21 yr21 (for all combinations of
time intervals, data not shown).

This is another important point in
Monte Carlo sampling for uncertainty anal-
ysis. Because an error in the allometry or N
concentrations represents a bias in the calcu-
lation, the uncertainty in the difference over
time (613 kg N ha21, Figure 6B) is much
less than the uncertainty in the mean at one
point in time (667 kg N ha21, Figure 2B).
The same is true for biomass or carbon ac-
cumulation: uncertainty in the pool size due

to bias in the estimate can be large compared
to the uncertainty in change over time.

Change over time in the N concentra-
tion of tissues is another possible source of
error in ecosystem budgets. In leaves of the
major species, which have been sampled an-
nually since 1992 near W6 (Fahey 2004), N
concentrations differ by up to 12% from the
concentrations reported from 1965 (Likens
and Bormann 1970), depending on the spe-
cies. Leaves make up 9% of the total N bud-
get. Tissues comprising greater portions of
the N budget, namely roots (36%), branches
(28%), and wood (17%), are more difficult
to sample than leaves, and they are not rou-
tinely monitored. However, this source of
uncertainty is not likely to be large com-
pared to the other fluxes in the ecosystem.
To account for a missing source of 14.2 kg
ha21 yr21, the concentrations of N in the
biomass would have had to decline by
28%, weighted across all tissue types, from
1965–1977, the period for which the miss-
ing source was estimated, which seems un-
likely. There are greater uncertainties in

other parts of the budget, such as the change
in soil N content.

Uncertainty in Soils
Forest soils are notoriously heteroge-

neous, with both horizontal and vertical spa-
tial variation contributing uncertainty to
most sampling approaches. The most accu-
rate method for estimating nutrient pools in
soils is probably the quantitative soil pit
(Vadeboncoeur et al. 2012), but estimates at
the stand level are not very precise if the
number of pits is small, each pit being time-
consuming to excavate. More precise esti-
mates can be made for the same investment
in effort by taking a greater number of soil
cores, but coring is inaccurate in rocky soils
(Levine et al. 2012).

Soil N storage has been evaluated at
Hubbard Brook in W5, beginning in 1983,
prior to the whole-tree clearcut of the water-
shed. The excavation of 59 quantitative soil
pits in W5, a monumental effort, allowed
the quantification of soil mass, rock volume,
and nutrient content across the 23-ha water-
shed; the N content of the mineral soil was
estimated at 5900 6 370 kg ha21 (Hunting-
ton et al. 1988). Thus a change over time of
730 kg ha21 (1.96 times the s.e.) would be
detectable at 95% confidence, which means
that a budget error of 14.2 kg ha21 yr21

would be measureable as a change in the
mineral soil only after about 50 years of ob-
servation. In remeasuring soils in W5, pits
were excavated at points that were selected
in advance to be as similar as possible and
located ;6 m apart. From 1983 to 1991,
8 years postharvest, there was a nonsignifi-
cant decline of 500 kg N ha21 (P 5 0.33)
(Johnson 1995). Assuming zero change in
the absence of harvesting may be justified,
but a zero with a large uncertainty.

Again, we are more often interested in
changes in soil storage of C and nutrients
than in the total stores. A large fraction of
soil stores is not very dynamic, and those
portions that do not respond to manage-
ment, disturbance, climate change, etc., are
not relevant to change over time. If it were
possible to repeatedly sample soils at the
same point, nondestructively, then the spa-
tial variability in forest soils would not be
such a handicap to detecting change over
time (Wielopolski et al. 2010).

The forest floor is easier than the min-
eral soil to sample repeatedly (Yanai et al.
2003). At Hubbard Brook, forest floors have
been sampled consistently at a 5-yr interval
since 1977, allowing the rate of change over

Figure 5. Uncertainty in estimates of N content for Hubbard Brook W6 in 2002 as a function
of the number of plots sampled. Estimates are based on 500 random samples of the number
of plots indicated, stratified by elevation as shown in Figure 4.
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time to be described by linear regression,
with associated uncertainty. Unfortunately,
even with 59–87 samples at each collection

date, the variation is so high that the 95%
confidence interval on the slope for the
change in forest floor mass from 1976 to

1997 was 1.66 Mg ha21 y21, with a nonsig-
nificant decline of 0.8 Mg ha21 y21 (P 5

0.61; data from Yanai et al. 1999). Assum-
ing an N concentration of 1.5% (Johnson
1995), this represents a change in N content
of 211 6 21 kg N ha21 y21. Although the
estimated rate of change is not statistically
significant, the uncertainty is important to
our confidence in ecosystem budgets, and
contributes to the difficulty of quantifying a
budget closure error.

Closing the Budget
The most difficult and as yet unattained

goal of uncertainty analysis in ecosystem
studies is to determine the uncertainty in
budget closure, such as the 14.2 kg ha21

yr21 of missing N in the 1965 budget for
Hubbard Brook. This requires estimating
uncertainty not only in changes in the pools
of N internal to the ecosystem, such as the
living biomass, forest floor, and mineral soil,
but also the inputs of N to the system in
precipitation, the outputs in stream water,
and gaseous exchange with the atmosphere.

Stream water export of nutrients is
difficult to characterize because of high
variability over time in both discharge and
concentration. Although stream discharge
is measured continuously, and has been
since the advent of chart recorders, stream
nutrient concentrations have conventionally
been sampled at frequencies of weekly or less
(Likens et al. 2002). Recently, advances in
sensor design have enabled more frequent
measurement of nutrient concentration
(e.g., Pellerin et al. 2009). High-frequency
concentration data can be subsampled to
generate lower frequency data to identify the
relationship of uncertainty to sampling ef-
fort (Stelzer and Likens 2006, Birgand et al.
2010).

Traditional methods for calculating sol-
ute fluxes include assuming constant con-
centrations between measurements, inter-
polating linearly between measurements,
and using correlations with variables such as
discharge to predict chemical concentra-
tions. The model selected is known to affect
flux estimates (Johnes 2007, Birgand et al.
2010, Wang et al. 2011), and is thus a source
of uncertainty. We are currently conducting
a comparison of models applied to multiple
solutes at multiple sites, including a more
advanced composite approach to interpola-
tion of solute concentration (Aulenbach and
Hooper 2006; Figure 7).

Other sources of uncertainty in stream
export of nutrients include analytical uncer-

Figure 6. Uncertainty in the change in N contents of biomass at the Hubbard Brook
Experimental Forest over a 5-year period. A. Monte Carlo results of N in biomass in 1997
and 2002, 100 iterations. B. Frequency distribution of 1000 iterations of the difference
between 1997 and 2002, showing the 95% confidence interval in white (from 14 to
24 kg ha21 yr21).
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tainty in the laboratory, discharge uncer-
tainty, and uncertainty in delineating the
watershed boundary (Figure 7). The most
important source may be the uncertainty in
discharge at high flows; discharge is often
more variable than streamwater concentra-
tion (e.g., Godsey et al. 2009).

In contrast to stream export, which has
uncertainty due to temporal variation, un-
certainty in atmospheric deposition is pri-
marily due to spatial variation (Weathers
et al. 2006). Precipitation amounts are mea-
sured at short intervals (15 minute steps or
shorter) or are cumulative, giving good esti-
mates of rainfall amounts at a point. The
chemistry of precipitation is also commonly
measured on an accumulated sample and is
thus representative of the entire time inter-

val (Martin et al. 2000). The uncertainty
in a point estimate of elemental deposition
may thus be quite low, reflecting the instru-
mental and analytical uncertainty rather
than sampling uncertainty.

Spatial variability in precipitation, how-
ever, introduces uncertainty in interpolation
between precipitation stations. Various
methods of interpolation are used in precip-
itation and atmospheric deposition studies
(Weathers et al. 2006, Garcia et al. 2008),
such that model selection is a source of un-
certainty. We compared several interpola-
tion methods (Thiessen polygon, spline,
inverse distance weighting, kriging, and re-
gression modeling) and found differences of
less than 1% across the methods for annual
precipitation of the nine watersheds at Hub-

bard Brook (data not shown). Additional
challenges to be addressed in estimates of
atmospheric inputs are associated with the
difficulty of monitoring dry deposition and
cloud deposition and their interaction with
vegetation structure.

Finally, for nitrogen, gaseous fluxes
could be important in balancing the eco-
system nutrient budget. The imbalance in
the 1965 N budget sparked interest in
quantifying N fixation (Roskoski 1980);
currently, the N budget closure suggests
a missing sink, not a missing source, and
researchers are measuring denitrification.
These gaseous fluxes are difficult to esti-
mate, both because of measurement chal-
lenges and because of high spatial and tem-
poral variability (Groffman et al. 2009).

Figure 7. Sources of uncertainty in stream export of nutrients, illustrated with values for streams at the Hubbard Brook Experimental Forest,
except for uncertainty due to gaps of 1–2 weeks in stream discharge at Gomadanzan, Japan (Tokuchi, Fukushima, and Matsuzaki, per
comm.). Uncertainty in stage height is the effect on annual flux of the uncertainty in weekly readings. Sampling uncertainty describes the
range in runoff variability for 2000–2009. The height-discharge relationship is calibrated only at low flow; uncertainty at high flows may
be very large. Model selection error is for the long-term average export of calcium and nitrate.
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The pursuit of closure in nutrient budgets
can provide insight about ecosystem pro-
cesses and also suggest where more research
is needed.

Value of Uncertainty Analysis to
Improve Scientific Knowledge

Uncertainty analysis can identify op-
portunities for reducing uncertainty by bet-
ter allocation of sampling resources. For ex-
ample, in the case of the N content of forest
biomass, uncertainty analysis shows which
of the allometric equations are most impor-
tant to improve, based on their contribution
to the overall uncertainty. Individual equa-
tions, such as that for bark biomass, may be
highly uncertain but not contribute as much
to overall uncertainty as an equation with
lower uncertainty that describes a more mas-
sive ecosystem component, such as wood
biomass (Yanai et al. 2010). In the Hubbard
Brook allometric equations, the tissues that
contribute the greatest uncertainty to the N
content of biomass are the branches, because
they have both high uncertainty in the bio-
mass equation and high N content (Yanai
et al. 2010). An optimized sampling design
for describing tree allometry might therefore
involve greater numbers of trees to describe
branch biomass and fewer to describe bark
biomass. Simulating sampling designs of
varying sampling intensity (e.g., Figure 5) is
another approach to evaluating the effi-
ciency of forest measurements.

There are many sampling designs in
place that do not optimally allocate re-
sources, and the framework of uncertainty
analysis can provide a basis for rational dis-
cussion of alternative designs. For example,
we can evaluate whether monitoring pro-
grams would benefit more by improving
characterization of spatial versus temporal
variation, as in the case of seasonal sampling
of lakes and streams. For forest soils, detect-
ing change over time is limited by extreme
spatial variability, making it attractive to al-
locate resources to methods development.
Uncertainty analysis has the potential to im-
prove the efficiency of information gained
given the resources expended, for all kinds of
sampling designs.
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