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Overview

gjam models multivariate responses that can be combinations of discrete and continuous variables, where
interpretation is needed on the observation scale. It was motivated by the challenges of modeling distribution
and abundance of multiple species, so-called joint species distribution models (JSDMs), where species and
other attributes are recorded on different scales. Some species groups are counted. Some may be continuous
cover values or basal area. Some may be recorded in ordinal bins, such as ‘rare’, ‘moderate’, and ‘abundant’.
Others may be presence-absence. Some are composition data, either fractional (continuous on (0, 1)) or
counts (e.g., molecular and fossil pollen data). Attributes such as body condition, infection status, and
herbivore damage are often included in field data. To allow transparent interpretation gjam avoids non-linear
link functions.

To combine different types of observations on their respective scales gjam defines three elements: representa-
tions in a continuous space, in a discrete space, and a partition of continuous space that joins them.

The integration of discrete and continuous data on the observed scales makes use of censoring. Censoring
extends a model for continuous variables across censored intervals. Continuous observations are uncensored.
Censored observations are discrete and can depend on sample effort.

Censoring is used with the effort for an observation to combine continuous and discrete variables with
appropriate weight. In count data, effort is determined by the size of the sample plot, search time, or both.
It is comparable to the offset in generalized linear models (GLM). In count composition data, effort is the
total count taken over all species. In PCR, effort is the number of reads for the sample. In paleoecological
data it is the count for the sample. In gjam discrete observations can be viewed as censored versions of an
underlying continuous space.

Model summary

The basic model is detailed in Clark et al. (2016). An observation consists of environmental variables and
species attributes, {xi,yi}, i = 1, ..., n. The vector xi contains predictors xiq : q = 1, ..., Q. The vector yi

contains attributes (responses), such as species abundance, presence-absence, and so forth, yis : s = 1, ..., S.
The effort Eis invested to obtain the observation of response s at location i can affect the observation. The
combinations of continuous and discrete measurements in observed yi motivate the three elements of gjam:

• A length-S vector wi ∈ <S represents response yi in continuous space. This continuous space allows
for the dependence structure with a covariance matrix. An element wis can be known (e.g., continuous
response yis) or unknown (e.g., discrete responses).

• A length-S vector of integers zi represents yi in discrete space. Each observed yis is assigned to an
interval zis ∈ {0, ...,Kis}. This discrete space allows for error in discrete variables; zero-inflation is a
common example, where a sample is assigned yis = 0, when in fact zis 6= 0. The number of intervals Kis

can differ between observations and between species, because each species can be observed in different
ways.

• The partition of continuous space at points pis,z ∈ P defines discrete intervals zis, thus connecting
continuous wis and discrete zis. Tow values (pis,k, pis,k+1] bound the kth interval of s in observation i.
Intervals are contiguous and provide support over the real line (−∞,∞). For discrete observations, k
is a censored interval, and wis is a latent variable. The set of censored intervals is C. The partition
set P can include both known (discrete counts, including composition data) and unknown (ordinal,
categorical) points.

An observation y maps to both w and z,

yis =
{

wis continuous
zis, pis,k < wis,k < pis,k+1 discrete
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Effort Eis affects the partition for discrete data. For the simple case where there is no error in the assignment
of discrete intervals, zi is known, and the model for wi is

wi|xi,yi,Ei ∼MVN(µi,Σ)×
S∏

s=1
Iis

µi = β′xi

Iis =
∏
k∈C

I
I(yis=k)
is,k (1− Iis,k)I(yis 6=k)

where Iis = I(wisEis ∈ pis,k), C is the set of discrete intervals, β is a Q× S matrix of coefficients, and Σ is a
S × S covariance matrix. There is a correlation matrix associated with Σ,

Rs,s′ = Σs,s′√
Σs,sΣs′,s′

Model interpretation

As a data-generating mechanism the model can be thought of like this: There is a vector of continuous
responses wi generated from mean vector µi and covariance Σ (Fig. 1a). The partition pis segments the
continuous scale into intervals, some of which are censored and others not. Each interval is defined by two
values, pisk = (pis,k, pis,k+1]. For a value of wis that falls within a censored interval k the observed yis is
assigned to discrete interval zis = k. For a value of wis that falls in an uncensored interval yis is assigned wis.

Of course, data present us with the inverse problem: the observed yis are continuous or discrete, with known
or unknown partition (pis,k, pis,k+1] (Fig. 1b). Depending on how the data are observed, we must impute at
least the elements of n× S matrix W that lie within censored intervals. Unknown elements of Z and P will
also be imputed in order to estimate β and Σ.
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Figure 1. Censoring in gjam. As a data-generating model (a), a realization wis that lies within a
censored interval is translated by the partition pis to discrete yis. The distribution of data (bars at left) is
induced by the latent scale and the partition. For inference (b), observed discrete yis takes values on the
latent scale from a truncated distibution.
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Summary of data types

The different types of data that can be included in the model are summarized here, assigned to the character
variable typeNames that is included in the modelList passed to gjamGibbs:

Table 1. Partition for each data type

typeNames
Type Obs values

Default
partition Comments

'CON' continuous,
uncensored

(−∞,∞) none e.g., centered,
standardized

'CA' continuous
abundance

[0,∞) (−∞, 0,∞)

'DA' discrete
abundance

[0, 1, 2, . . . ] (−∞, 1
2Ei

, 3
2Ei

, . . . , maxs(yi)−1/2
Ei

,∞)1e.g., count data

'PA' presence-
absence

[0, 1] (−∞, 0,∞) unit variance
scale

'OC' ordinal counts [0, 1, 2, . . . ,K] (−∞, 0, estimates,∞)unit variance
scale, imputed
partition

'FC' fractional
composition

[0, 1] (−∞, 0, 1,∞) relative
abundance

'CC' count
composition

[0, 1, 2, . . . , Ei] (−∞, 1
2Ei

, 3
2Ei

, . . . , 1−
1

2Ei
,∞)1

relative
abundance
counts

'CAT' categorical [0, 1] (−∞,maxk(wis,k),∞)2unit variance,
multiple levels

1 For 'DA' and 'CC' data the second element of the partition is not zero, but rather depends on effort. There
is thus zero-inflation. The default partition for each data type can be changed with the function gjamCensorY
(see Specifying censored intervals).
2 For 'CAT' data species s has k = 1, . . . ,Ks total categories. The category with the largest wis,k is the ‘1’,
all others are zeros.

For presence-absence data with y being discrete zeros and ones, pis = (−∞, 0,∞). This is equivalent to
Chib and Greenberg’s (2008) model, which could be written Iis = I(wis > 0)yisI(wis 6 0)1−yis .

For a continous variable with point mass at zero, continuous abundance, this is a multivariate Tobit model,
with Iis = I(wis = yis)I(yis>0)I(wis 6 0)I(yis60). This is the same partition used for the probit model, the
difference being that the positive values in the Tobit are uncensored.

Categorical responses fit within the same framework. Each categorical response occupies as many columns
in Y as there are independent levels in response s, levels being k = 1, ...,Ks − 1. For example, if randomly
sampled plots are scored by one of five cover types, then there are four columns in Y for the response s.
The four columns can have at most one 1. If all four columns are 0, then the reference level is observed.
The observed level has the largest value of wis,k (Table 1). This is similar to Zhang et al.’s (2008) model for
categorical data.

For ordinal counts gjam is Lawrence et al.’s (2008) model having the partition pis = (−∞, 0, pis,2, pis,3, ..., pis,K ,∞),
where all but the first two and the last elements must be inferred. The partition must be inferred, because
the ordinal scale is only relative.

Like categorical data, composition data also have one reference class. For discrete count data the partition
for observation i can be defined to account for sample effort (see next section).
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Effort and weight of discrete data

The partition for a discrete interval k depends on effort for sample i

(pi,k, pi,k+1] =
(
k − 1/2
Ei

,
k + 1/2
Ei

]
In gjam effort affects the partition, and therefore the censor intervals on the latent variable wis and, finally,
the weight of each observation. For discrete abundance ('DA') data on plots of a given area, large plots
contribute more weight than small plots. Because plots have different areas one might choose to model wis

on a ‘per-area’ scale (density) rather than a ‘per-plot’ scale. Here is a table of variables for the case where
counts represent the same density, but have different effort due to different plot areas:

count yis = zis plot area Ei density wis

bin k
density pik

10 0.1 ha 100 ha−1 11 (95, 105)
100 1.0 ha 100 ha−1 101 (99.5, 100.5)

The wide partition on the 0.1-ha plot admits large variance around the observation of 10 trees per 0.1 ha
plot. Wide variance on an observation decreases its contribution to the fit. Conversely, the narrow partition
on the 1.0-ha plot constrains density to a narrow interval around the observed value.

For composition count ('CC') data effort is represented by the total count, and wis lies on the composition
scale (0, 1). Using the same partition as previously the table for two observations that represent the fraction
0.10 with different effort (e.g., total reads in PCR data) looks like this:

count yis = zis total count Ei fraction wis bin k fraction pik

10 100 0.1 11 (0.095, 0.105)
10,000 100,000 0.1 10,001 (0.099995, 0.100005)

Again, on the composition scale (0, 1), weight of the observation is determined by the partition width and, in
turn, effort.

Using gjam

It’s easiest to start with the examples from gjam help pages. This section includes Simulated examples,
which expands on these examples. The section that follows, Your data, discusses some of the issues you
might encounter when specifying your own model applied to your data.

Simulated examples

Simulated data are used to check that the algorithm can recover true parameter values and predict data,
including underlying latent variables. To illustrate I simulate a sample of size n = 500 for S = 10 species and
Q = 3 predictors. To indicate that all species are continuous abundance data I specify typeNames as 'CA':

library(gjam)
sim <- gjamSimData(n = 500, S = 10, Q = 3, typeNames = 'CA')
summary(sim)
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The object sim includes elements needed to analyze the simulated data set. sim$typeNames is now a length-S
vector. The formula follows standard R syntax. It does not start with y ~, because gjam is multivariate.
The multivariate response is supplied as a n× S matrix ydata. Here is the formula for this example:

sim$formula

The model can include interactions.

The simulated parameter values are returned from gjamSimData in the list sim$trueValues, shown below
with the corresponding names of estimates from gjamGibbs:

Table 2. Variable names and scales in simulation and fitting

model sim$trueValues1 out$modelSummary2 out$chains2 scale
source gjamSimData gjamGibbs gjamGibbs modelSummary
β beta betaMu bgibbs Y/X
Σ sigma sigMu sgibbs YsYs′

R corSpec corMu sgibbs correlation
P 3 cuts cutMu sgibbs correlation
K 4 - - kgibbs dimensionless
σ2 4 - - sigErrGibbs Y 2

α 5 - betaTraitMu agibbs U/X 6

Ω 5 - sigmaTraitMu mgibbs UmUm′ 6

1 sim is a fitted object from gjamSimData.
2 out is a fitted object from gjamGibbs.
3 Only when ydata includes ordinal types.
4 Only with dimension reduction, reductList is included in modelList (Dimension reduction vignette).
5 Only for trait analysis, traitList is included in modelList (Trait vignette).
6 U is the response data in the trait vignette.

As is typical in species abundance data the zeros can be overwhelming. The simulator generates many zeros:

par(bty = 'n', mfrow = c(1,2), family='')
h <- hist(c(-1,sim$y),nclass = 50,plot = F)
plot(h$counts,h$mids,type = 's')
plot(sim$w,sim$y,cex = .2)

Here is a short Gibbs sampler with ng = 100 iterations to estimate parameters and fit the data. The function
gjamGibbs needs the formula for the model, the data.frame xdata, which includes the predictors, the
response matrix ydata, and a modelList specifying number of Gibbs steps (ng), the burnin, and typeNames.

# a few iterations
ml <- list(ng = 100, burnin = 10, typeNames = sim$typeNames)
out <- gjamGibbs(sim$formula, sim$xdata, sim$y, modelList = ml)
summary(out)

Among the objects to consider initially are the design matrix out$x, response matrix y, and the Gibbs
sampler chains with these names and sizes:
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summary(out$chains)

chains is a list of matrices, each with ng rows and as many columns as needed to hold parameter estimates.
Here are the chains and their summaries in modelSummary:

Table 3. Variables names in ouput variables and chains

chains modelSummary size comments
sgibbs sigMu, sigSe S × S covariance matrix Σ
bgibbs betaMu, betaSe Q× S coefficient matrix β

Additional summaries are available in the list modelSummary:

summary(out$modelSummary)

The matrix classBySpec shows the number of observations in each interval. For this example of continuous
data censored at zero, the two bins are k = 0, 1 corresponding to the intervals (ps,0, ps,1] = (−∞, 0] and
{ps,1, ps,2) = (0,∞). The length-(K + 1) partition vector is the same for all species, p = (−∞, 0,∞). Here is
classBySpec for this example:

out$modelSummary$classBySpec

The first interval is censored (all values of yis = 0). The second interval is not censored (yis = wis).

The data are also predicted in gjamGibbs, summarized by predictive means and standard errors. These
are contained in n×Q matrices $modelSummary$xpredMu and $modelSummary$xpredSd and n× S matrices
$modelSummary$yMu and $modelSummary$ySd. The latent states are included in $modelSummary$wMu and
$modelSummary$wSd.

The output can be viewed with the function gjamPlot:

sim <- gjamSimData(n = 500, S = 10, typeNames = 'CA')
ml <- list(ng = 2000, burnin = 500, typeNames = sim$typeNames)
out <- gjamGibbs(sim$formula, sim$xdata, sim$ydata, modelList = ml)
pl <- list(trueValues = sim$trueValues,width = 3,height = 2, GRIDPLOTS = T, SMALLPLOTS = F)
gjamPlot(output = out, plotPars = pl)

gjamPlot creates a number of plots comparing true and estimated parameters (for simulated data). Here are
some simple biplots:

par(bty = 'n', mfrow = c(1,3), family='')
plot(sim$trueValues$beta, out$modelSummary$betaMu)
plot(sim$trueValues$corSpec, out$modelSummary$corMu)
plot(sim$y,out$modelSummary$yMu, cex = .2)

To process the output beyond what is provided in gjamPlot I can work directly with the chains.

My data

gjam uses the standard R syntax in the formula that I would with functions like lm() and glm(). Because
gjam uses inverse prediction to summarize large multivariate output, it is important to abide by this syntax.
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For example, to analyze a model with quadratic and interaction terms, I might simply construct my own
design matrix with these columns included, i.e., side-stepping the standard syntax for these effects that can be
specified in formula. This would be fine for model fitting. However, without specifying this in the formula
there is no way for gjam to know that these columns are in fact non-linear transformations of other columns.
Without this knowledge there is no way to properly predict them. The prediction that gjam would return
would include silly variable combinations.
To illustrate proper model specification I use a few lines from the data.frame of predictors in the
forestTraits data set:

library(gjam)
data(forestTraits)
xdata <- forestTraits$xdata[,c(1,2,8)]

xdata[1:5,]

## temp deficit soil
## 1 1.22 0.04 reference
## 2 0.18 0.21 reference
## 3 -0.94 0.20 SpodHist
## 4 0.64 0.82 reference
## 5 0.82 -0.18 reference

Here is a simple model specification with as.formula() that includes only main effects:

formula <- as.formula( ~ temp + deficit + soil )

The design matrix x that is generated in gjam has an intercept, two covariates, and four columns for the
multilevel factor soil:

## (Intercept) temp deficit soilMol soilreference soilSpodHist soilUltKan
## 1 1 1.22 0.04 0 1 0 0
## 2 1 0.18 0.21 0 1 0 0
## 3 1 -0.94 0.20 0 0 1 0
## 4 1 0.64 0.82 0 1 0 0
## 5 1 0.82 -0.18 0 1 0 0

To include interactions between temp and soil I use the symbol ‘*’:

formula <- as.formula( ~ temp*soil )

Here is the design matrix that results from this formula with interaction terms indicated by the symbol ':'

## (Intercept) temp soilMol soilreference soilSpodHist soilUltKan
## 1 1 1.22 0 1 0 0
## 2 1 0.18 0 1 0 0
## 3 1 -0.94 0 0 1 0
## 4 1 0.64 0 1 0 0
## 5 1 0.82 0 1 0 0
## temp:soilMol temp:soilreference temp:soilSpodHist temp:soilUltKan
## 1 0 1.22 0.00 0
## 2 0 0.18 0.00 0
## 3 0 0.00 -0.94 0
## 4 0 0.64 0.00 0
## 5 0 0.82 0.00 0
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For a quadratic term I use the R function I():

formula <- as.formula( ~ temp + I(temp^2) + deficit )

Here is the design matrix with linear and quadratic terms:

## (Intercept) temp I(temp^2) deficit
## 1 1 1.22 1.4884 0.04
## 2 1 0.18 0.0324 0.21
## 3 1 -0.94 0.8836 0.20
## 4 1 0.64 0.4096 0.82
## 5 1 0.82 0.6724 -0.18

Here is a quadratic response surface for temp and deficit:

formula <- as.formula( ~ temp*deficit + I(temp^2) + I(deficit^2) )

Here is the design matrix with all combinations:

## (Intercept) temp deficit I(temp^2) I(deficit^2) temp:deficit
## 1 1 1.22 0.04 1.4884 0.0016 0.0488
## 2 1 0.18 0.21 0.0324 0.0441 0.0378
## 3 1 -0.94 0.20 0.8836 0.0400 -0.1880
## 4 1 0.64 0.82 0.4096 0.6724 0.5248
## 5 1 0.82 -0.18 0.6724 0.0324 -0.1476

These are examples of the formula options available in gjam. Using them will allow for proper inverse
prediction of x. To optimize MCMC gjam does not predict x for higher order polynomials. For such models
set predictX = F in the modelList.

I can use this model to analyze a tree data set. For my data set I use the tree data contained in forestTraits.
It is stored in de-zeroed format, so I extract it with the function gjamReZero. Here are dimensions and the
upper left corner of the response matrix Y,

ydata <- gjamReZero(forestTraits$treesDeZero) # extract y
dim(ydata)

## [1] 1617 98

ydata[1:5,1:6]

## abieBals acerBarb acerNegu acerPens acerRubr acerSac2
## [1,] 0 0 1 0 5 0
## [2,] 0 0 10 0 5 6
## [3,] 3 0 0 0 15 0
## [4,] 0 0 4 0 20 1
## [5,] 0 0 2 0 10 0

In code that follows I treat them as discrete counts, typeNames = 'DA'. Because of the large number of
columns (98) I speed things up calling for dimension reduction, passed as N × r = 20× 4:
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rl <- list(r = 4, N = 20)
ml <- list(ng = 1000, burnin = 500, typeNames = 'DA', reductList = rl)
form <- as.formula( ~ temp*deficit + I(temp^2) + I(deficit^2) )
out <- gjamGibbs(form, xdata = xdata, ydata = ydata, modelList = ml)
plotPars <- list(SMALLPLOTS = F, GRIDPLOTS=T, corLines=F, specLabs = F)
gjamPlot(output = out, plotPars = plotPars)

Additional information on variable types and their treatment in gjam is included later in this document and
in the other gjam vignettes.

Plotting output

In the foregoing example arguments passed to gjamPlot in the list plotPars included SMALLPLOTS = F
(do not compress margins and axes), GRIDPLOTS = T (draw grid diagrams as heat maps for parameter values
and predictions), corLines = F (do not separate parameter values with lines on gridplots), and specLabs =
F (do not put species labels on plots, because there are too many see clearly). In this section I summarize
plots generated by gjamPlot.

By default, plots are sent to the screen. I hit return to see the next plot. Faster execution obtains if I write
plots directly to pdf files, with SAVEPLOTS = T. I can specify a folder this way:

plotPars <- list(SMALLPLOTS = F, GRIDPLOTS=T, SAVEPLOTS = T, outfolder = 'stuff')

In all plots, posterior distributions and predictions are shown as 68% (boxes) and 95% (whiskers) intervals,
respectively. Here are the plots in alphabetical order by file name:

Name Comments
betaAll CIs for β
beta_(variable)CIs one file

per variable
betaChainsExample

MCMC
chains for β

clusterDataECluster
analysis of
raw data and
E matrix

clusterGridBCluster and
grid of β

clusterGridECluster and
grid of E

clusterGridRCluster and
grid of R

corChains Example
MCMC
chains for R

dimRed Dimension
reduction (see
vignette) for
Σ matrix

gridB_O Grid of β and
inclusion
probability ω
10



Name Comments
gridY_E Grid of

cor(Y) and E,
ordered by
cor(Y)

gridF_B Grid of
sensitivity F
and β,
ordered by F

gridF_X Grid of
sensitivity F
and cov(X),
ordered by F

gridR_E Grid of R
and E
ordered by R

gridR Grid of R,
ordered by
cluster
analysis.

gridTraitB If traits are
predicted, see
gjam
vignette on
traits.

ordinationOrdination of
E matrix,
including
eigenvalues
(cumulative)

partition If ordinal
data in Y,
posterior
distribution
of P

richness Predictive
distribution of
richness with
data (brown
histogram)

sensitivityOverall
sensitivity f
by predictor
variable.

traits If traits are
predicted, see
gjam
vignette on
traits.
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Name Comments
traitPred If traits are

predicted, see
gjam
vignette on
traits.

trueVsPars If simulated
data and
trueValues
in plotPars,
CIs for
parameter
values

xPred Inverse
predictive
distribution
of of X

xPredFactorsInverse
predictive
distribution of
factor levels

yPred Predictive
distribution of
Y, in- (blue
bars) and
out-of-sample
(dots)

yPredAll If plotAllY
= T
predictions of
up to 16
species are
generated.

Flexibility in gjam

Heterogeneous sample effort

Here is an example with discrete abundance data, now with heterogeneous sample effort. Heterogeneous effort
applies wherever plot area or search time varies, such as vegetation plots of varying area, animal survey data
with variable search time, or catch returns from fishing vessels with different gear and trawling times. Here I
simulate a list containing the columns and the effort that applies to those columns, shown for 50 observations:

S <- 5
n <- 50
ef <- list( columns = 1:S, values = round(runif(n,.5,5),1) )
sim <- gjamSimData(n, S, typeNames = 'DA', effort = ef)
ef

If ef$values consists of a length-n vector, then gjam assumes each value applies to all species in the
observation for the corresponding element of vector ef$columns. This is the case shown above and would
apply when effort is plot area, search time, sample volumn, and so forth. Alternatively, values can be
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supplied as a matrix, which could differ by observation and species. For example, camera trap data detect
large animals at greater distances than small animals. For simulation purposes gjamSimData only accepts a
vector.

Because observations are discrete the continuous latent variables wis are censored. Unlike the previous
continuous example, observations yis now assume only discrete values:

plot(sim$w,sim$y, cex = .2)

The large scatter reflects the variable effort represented by each observation. Incorporating the effort scale
gives this plot:

plot(sim$w*ef$values, sim$y, cex = .2)

The heterogeneous effort affects the weight of each observation in model fitting. The effort is entered in
modelList. Increase the number of iterations and look at plots:

S <- 10
n <- 1500
ef <- list( columns = 1:S, values = round(runif(n,.5,5),1) )
sim <- gjamSimData(n, S, typeNames = 'DA',effort = ef)
ml <- list(ng = 1000, burnin = 250, typeNames = sim$typeNames, effort = ef)
out <- gjamGibbs(sim$formula, sim$xdata, sim$ydata, modelList = ml)
pl <- list(trueValues = sim$trueValues,SMALLPLOTS=F)
gjamPlot(output = out, plotPars = pl)

Sample effort in composition data

Composition count ('CC') data have heterogenous effort due to different numbers of counts for each sample.
For example, in microbiome data, the number of reads per sample can range from 102 to 106. The number of
reads does not depend on total abundance. It is generally agreed that only relative differences are important.
gjam knows that the effort in CC data is the total count for the sample, so effort does not need to be
specified. Here is an example with simulated data:

sim <- gjamSimData(S = 8, typeNames = 'CC')
types <- sim$typeNames
xdata <- sim$xdata
y <- sim$y
ml <- list(ng = 2000, burnin = 500, typeNames = types)
out <- gjamGibbs(sim$formula, xdata, y, modelList = ml)
pl <- list(trueValues = sim$trueValues, width = 3, height = 3,

GRIDPLOTS = T, SMALLPLOTS = F)
gjamPlot(output = out, plotPars = pl)

For comparison, here is an example with fractional composition, where there is no effort:

sim <- gjamSimData(S = 20, typeNames = 'FC')
types <- sim$typeNames
xdata <- sim$xdata
y <- sim$y
ml <- list(ng = 1000, burnin = 250, typeNames = types)
out <- gjamGibbs(sim$formula, xdata, y, modelList = ml)
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pl <- list(trueValues = sim$trueValues, width = 3, height = 3,
GRIDPLOTS = T, SMALLPLOTS = F)

gjamPlot(output = out, plotPars = pl)

The default censoring for different data types can be changed. A gjam vignette on trait modeling provides
an example.

The partition in ordinal data

Ordinal count ('OC') data are collected where abundance must be evaluated rapidly or precise measurements
are difficult. Because there is no absolute scale the partition must be inferred. Here is an example with 10
species:

sim <- gjamSimData(typeNames = 'OC')
ml <- list(ng = 2000, burnin = 500, typeNames = sim$typeNames)
out <- gjamGibbs(sim$formula, sim$xdata, sim$ydata, modelList = ml)

A simple plot of the posterior mean values of cutMu shows the estimates with true values from simulation:

keep <- strsplit(colnames(out$modelSummary$cutMu),'C-') #only saved columns
keep <- matrix(as.numeric(unlist(keep)), ncol = 2, byrow = T)[,2]
plot(sim$trueValues$cuts[,keep],out$modelSummary$cutMu)

Here are plots:

pl <- list(trueValues = sim$trueValues, SMALLPLOTS = F)
gjamPlot(output = out, plotPars = pl)

Categorical data

Categorical data have levels within groups. The levels are unordered. For a given observation the observed
level is assigned as a factor in data.frame ydata. In observation vector yi there is an element for each
level, one of which is a 1 and remainder are 0. Suppose that observations are obtained on attributes of
individual plants, each plant being an observation. The group leaf type might have four levels broadleaf
decidious bd, needleleaf decidious nd, broadleaf evergreen be, and needleaf evergreen ne. A second group
xylem anatomy might have three levels diffuse porous dp, ring porous rp, and tracheid tr. In both cases I
assign the last class to be a reference class, other. Ten rows of the response matrix data might look like this:

## leaf xylem
## 1 other rp
## 2 other dp
## 3 nd dp
## 4 bd dp
## 5 other dp
## 6 other dp
## 7 other dp
## 8 bd rp
## 9 nd rp
## 10 other dp
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gjam expands these two groups into four and three columns in y, respectively. As for composition data there
is one redundant column for each group. Here is an example with simulated data, having two categorical
groups and one fractional compostion group:

types <- c('CAT', 'CAT','CAT')
f <- gjamSimData(n=2000, S = length(types), typeNames = types)
ml <- list(ng = 1500, burnin = 500, typeNames = f$typeNames, PREDICTX = F)
out <- gjamGibbs( f$formula, xdata = f$xdata, ydata = f$ydata, modelList = ml)
pl <- list(trueValues = f$trueValues, SMALLPLOTS=F, plotAllY = T)
gjamPlot(out, plotPars = pl)

Combinations of data types

One of the advantages of gjam is that it combines data of many types. Here is an example showing joint
analysis of 12 species represented by five data types, specified by column:

types <- c('OC','OC','OC','OC','CC','CC','CC','CC','CC','CA','CA','PA','PA')
sim <- gjamSimData(S = length(types), Q = 3, typeNames = types)
ml <- list(ng = 2000, burnin = 500, typeNames = sim$typeNames)
out <- gjamGibbs(sim$formula, sim$xdata, sim$ydata, modelList = ml)
tmp <- data.frame(sim$typeNames, out$modelSummary$classBySpec[,1:10])
print(tmp)

I have displayed the first 10 columns of classBySpec from the modelSummary of out, with their typeNames.
The ordinal count ('OC') data occupy lower intervals. The width of each interval in OC data depends on the
estimate of the partition in cutMu.

The composition count ('CC') data occupy a broader range of intervals. Because CC data are only relative,
there is information on only S − 1 species. One species is selected as other. The other class can be a
collection of rare species (Clark et al. 2016).

Both continuous abundance ('CA') and presence-absence ('PA') data have two intervals. For CA data only
the first interval is censored, the zeros (see above). For PA data both interval are censored; it is a multivariate
probit.

Here are some plots for analysis of this model:

pl <- list(trueValues = sim$trueValues, SMALLPLOTS = F)
gjamPlot(output = out, plotPars = pl)

Missing data, out-of-sample prediction

gjam identifies missing values in xdata and y and models them as part of the posterior distribution. These
are identified by the vector missingIndex as part of the output from gjamGibbs. The estimates for missing
X are missingX and missingXSd. The estimates for missing Y are yMissMu and yMissSd.

To simulate missing data use nmiss to indicate number of missing value. The actual value will be less than
nmiss:

sim <- gjamSimData(S = 5, typeNames = 'OC', nmiss = 20)
which(is.na(sim$xdata), arr.ind = T)
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Note that missing values are assumed to occur in random rows and columns, but not in column one, which is
the intercept. No further action is needed for model fitting, as gjamGibbs knows to treat these as missing
data.
Out-of-sample prediction of Y is not part of the posterior distribution. Holdouts can be specified randomly
with holdoutN (the number of plots to be held out at random) or with holdoutIndex (plot numbers). The
latter might be useful when a comparison of predictions is desired for different models using the same plots
as holdouts. Of course, out-of-sample prediction assumes that X is known for predicted values, and predicted
Y are unknown.

f <- gjamSimData(typeNames = 'CA', nmiss = 20)
ml <- list(ng = 2000, burnin = 500, typeNames = f$typeNames, holdoutN = 50)
out <- gjamGibbs(f$formula, f$xdata, f$ydata, modelList = ml)

par(mfrow=c(1,3))
plot(out$x[out$missingIndex], out$modelSummary$xpredMu[out$missingIndex])
title('missing in x'); abline(0,1)
plot(out$x[out$holdoutIndex,-1], out$modelSummary$xpredMu[out$holdoutIndex,-1])
title('holdouts in x'); abline(0,1)
plot(out$y[out$holdoutIndex,], out$modelSummary$yMu[out$holdoutIndex,])
title('holdouts in y'); abline(0,1)

Conditional prediction

gjam can predict a subset of columns y conditional on other columns using the function gjamPredict. An
example is provided in the gjam vignette on dimension reduction.

Grid and cluster plots

If the plotPars list passed to gjamPlot specifies GRIDPLOTS = T, then grid and clusture plots are generated
as gridded values for β, Σ and R. An example for Σ and R are shown here. In the case of β the predictors
are organized from high to low sensitivity, from diag(βΣβ′). Here is an example:

pl <- list(trueValues = f$trueValues, GRIDPLOTS = T,
SMALLPLOTS = F)

fit <- gjamPlot(output = out, plotPars = pl)

Gridplots of matrix R show conditional and marginal dependence in white and grey. In plots of E marginal
independence is shown in grey, but conditional independence is not shown, as the matrix does not have an
inverse (Clark et al. 2016).
The sensitivity matrix F is shown together in a plot with individual species responses β.
The plot in which the model residual correlation R and the response correlation β are compared are ordered
by their similiarity in the R. If the two contain similar structure, then it will be evident in this comparison.
There is no reason to expect them to be similar.
For large S the labels are not shown on the graphs, they would be too small. The order of species and the
cluster groups to which they belong are returned in fit$clusterOrder and fit$clusterIndex.

When a model won’t execute

A joint model for data sets with many response variables can be unstable for several reasons. gjam is vulnerable
due to the fact that columns in y have different scales and, thus, can range over orders of magnitude. If
execution fails there are several options.
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If you are simulating data, first try it again. The simulator aims to generate data that will actually work,
more challenging than would be the case for a univariate simulation of a single data type.

Check to insure that all columns in y include at least some non-zero values. One would not expect a univariate
model to fit a data set where y is all zeros. However, when there are many columns in y, the fact that some
are never or rarely observed can be overlooked. The functions hist, colSums, and, for discrete data, table,
can be used. The function gjamTrimY can be used to limit y to only those columns with sufficient non-zero
observations.

If a simulation fails due to a cholesky error (Σ is not positive definite), consider either reducing the number
of columns in y or implementing dimension reduction (see the gjam vignette on this subject).

Algorithm summary

Model fitting is done by Gibbs sampling. Parameters β and Σ are sampled directly,

1. Σ|W,β

2. β|Σ,W

3. For unknown partition (ordinal variables) the partition is sampled, P|Z,W

4. For ordinal, presence-absence, and categorical data, latent variables are drawn on the correlation scale,
W|R,α,P, where R = D−1/2ΣD−1/2, α = D−1/2β, P = D−1/2P, and D = diag(Σ).
For other variables that are discrete or censored, latent variables are drawn on the covariance scale,
W|Σ,β,P.

Where discrete intervals can be observed with error, the zis are sampled (e.g., zero-inflation). That option is
not currently available, but see Clark et al. (2016).

Inverse prediction of input variables provides sensitivity analysis (Clark et al. 2011, 2014). Columns in X
that are linear (not involved in interactions, polynomial terms, or factors) are sampled directly from the
inverted model. Others are sampled by Metropolis. Sampling is described in the Supplement file to Clark et
al. (2016).

For additional information see this link

The model is described in Clark et al (2016).
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