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• The first step in rigorous exploration is formulating 
testable hypotheses or posing critical research questions 

• To apply the scientific method, we must collect data that 
allow us to discriminate between different hypotheses 

    we collect data to: 

• estimate values of characteristics of the parent population  

• conduct hypothesis tests 

• Before we collect data, we plan and design data collection 
procedures in support of those hypotheses and/or 
questions 

• Data should be collected with a purpose 
• Independent variables (for explanation) 

• Dependent variables (for inference) 

 Your research hypotheses/questions define what variables need 
to be measured 
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Data collection for a purpose 

The importance of planning your study 

design 

Even if you do not do an “experiment”, the concepts of 

experimental design are essential in supporting your 

research  

• Data are collected with the purpose of supporting/ 

refuting specific pre-formulated hypotheses 
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Empirical (mensurative) approaches 
• Empirical approaches are purely observational, e.g.: 

• Incremental growth of old growth trees in Boreal forest by species 

• Soil efflux in a longleaf pine forest over time 

• Change in NEE due to hurricane 

Experimental (manipulative) approaches 
• An experiment is a set of actions and observations, 

performed to verify or falsify a hypothesis or research a 

causal relationship between phenomena.  

 a force applied to an experimental material: a treatment, e.g.: 

• Change in annual NEE in response to fertilizer 

• Change in NEE when exotic species are removed 

• Incremental growth of old growth trees under rainfall exclusion 

Data collection and the scientific method 

Requirements for statistically defensible 

analysis of data 

• Randomization 

• Why? 

• Replication 

• Why? 

• Design Control 

• What does this mean? 

 

Assures that our own 

biases do not enter the 

data. 

Necessary to meet 

assumption of required 

by most statistical tests 

Permits calculation 

of experimental 

error, 

“Insurance” against 

chance events, 

Averages out 

“noise” 
Use homogeneous 

experimental/sampling units, 

OR If material is heterogeneous, 

then use blocking 
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• Random sampling ensures that population parameter 

estimates are unbiased, e.g.: 

• Plants randomly selected from population of interest 

• Fixed area plot locations randomly selected from within study area 

• If we do not obtain a random sample, we reduce our 

inferential population 

• Experimental units should be randomly allocated to 

treatment groups 

Randomization 
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• Lack of independence can arise over space, time, or can 

be due to genetics 

• While independence is necessary for basic statistical 

techniques, there are often ways of appropriately 

accounting for dependencies in statistical analyses (more 

on this later) 

 

Independence 

• In order to analyze data, we must have multiple 

observations of each factor combination we are interested 

in 

• If we have one factor we are interested in (e.g. two species), we 

must have at least two observations per species (4 obs) in order to 

assess the variability within species and between species 

• BUT NOTE: two is dangerous – what if one individual dies? 

• Replication reduces the chances that we have inherent 

consistent differences in experimental units that receive 

the same treatment 

• i.e., we can be more confident in attributing differences to 

treatments rather than other factors 

Replication 

• Biologists in particular often find it difficult to 

replicate the exact same conditions, e.g.: 

• Are two pots of soil the same? 

• Are two rivers the same? 

• To properly replicate conditions, “pseudo-

replicates” are often chosen, e.g.: 

• To assess the effect of burning on soil nutrient 

composition, we sample from adjacent burned and 

unburned areas 

Replication, pseudoreplication, and 

confounding 
• Are these really replicates? 

1.Since land is likely heterogeneous, 

these are not true replicates, but they 

are as good as it gets in ecology! 

2.Since the fire was applied to the 

entire area, we really have only one 

true replicate (in each of unburned 

and burned areas) with 

pseudoreplicates, or subsamples 

 We need multiple fires in order to 

appropriately evaluate impact of fire 

in general; otherwise, our inference 

is only to this fire 

Example of sampling from burned and 

unburned areas? 

burned 

Unburned 

• Pseudoreplication, according to Hurlbert (1984) is: 

 "the use of inferential statistics to test for treatment effects with 
data from experiments where either treatments are not 

replicated (though samples may be) or replicates are not 
statistically independent.“ 

• Heffner et al (1996) revisited this concept and 
distinguished a pseudoreplicate from a true replicate, 
which they defined as: 

 "the smallest experimental unit to which a treatment is independently 
applied.“ 

• True replication is required in order to make statistical 
inference, as it permits the estimation of variability within a 
treatment.  
 

Pseudoreplication What is meant by “experimental design”? 

Controls how we apply treatments to observational 
units, or select data from different populations 

 Controls how we analyze the data 
• is often intimately related to the sampling design under which the 

data was collected 

• E.g., we want to describe longleaf pine regeneration in a 
90 ha area with 3 understory types (20 ha in A, 30 ha in 
B, 40 ha in C) 

• each understory type covers a contiguous and non-
overlapping area, so we choose 3 1-ha areas, and within 
each install 9 grid plots  

• OR, each understory type is patchy over our study area; 
we choose 3 random areas of each type, and within each 
install 9 grid plots 
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One experimental design option Another experimental design option 

What is meant by “experimental design”? 

- 2 
Controls how we apply treatments to observational 
units, or select data from different populations 

 Controls how we analyze the data 
• is often intimately related to the sampling design under which the 

data was collected 

• E.g., we want to describe disease presence in frogs 
under three diet regimes (9 each of low, medium, high 
protein), and have 3 blocks of space available (in three  
different locations) 

• In block #1, we observe 9 frogs with low protein, in block 
#2, we observe 9 frogs with medium protein, and in block 
#3, we observe 9 frogs with high protein 

• OR, 3 frogs with each of the diet regimes in each of block 
#1, #2, #3 

One experimental design option 

A A A 

A A A 

A A A 

B B B 

B B B 

B B B 

C C C 

C C C 

C C C 

A B C 

A B C 

A B C 

C A B 

C A B 

C A B 

B C A 

B C A 

B C A 

Another experimental design option 

How are these designs different?  Under what circumstances is each 

design more appropriate/more efficient 

Note: most tests are robust to moderate violations 

1. Samples are from a ~Normal population 

• If population is very skewed or multi-modal, tests not valid 

• Transformation can often fix this 

2. Samples are from homoscedastic (equal variance) 

populations 

• Often, fixing #1 will fix this problem 

3. Samples are randomly selected from the population 

• considered in the design stage of your experiment 

4. Samples are independent 

• If samples are not independent, however, there are often ways to 

mitigate it in the analysis process 

 

Assumptions of “traditional” statistical 

hypothesis testing 
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Sampling Design 

• Sampling refers to the act of taking a subset of data to represent 

the whole  

• You don't have to eat the whole ox to know that it is tough. – 

(Anonymous, but frequently misattributed to Dr. Samuel Johnson) 

• The goal is to improve efficiency of data collection, while avoiding 

mismatches between the sample and target population 

• There are a wide variety of methods that can be employed to 

obtain individuals for measurement 

• The choice of designs depends on 

• Nature and quality of the sampling frame 

• Availability of auxiliary information about units on the frame 

• Accuracy requirements, and the need to measure accuracy 

• Whether detailed analysis of the sample is expected 

• Cost/operational concerns 
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Some random sampling methods 

• Simple random sampling (SRS) 

• Systematic sampling (SyRS) 

• Stratified sampling (StRS) 

• Others, for example… 

• Cluster sampling (CS)  

• Multi-stage sampling (MsS) 

• Multi-phase sampling (MpS) 
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• Easiest way to sample 

• The probability of obtaining any 

group of observations is the same 

• The probability of obtaining any 

observation is the same for each 

sampling unit 

Simple Random Sampling (SRS) 

 Effective only if the population to be sampled is homogenous/uniform 

variation 

 If your population is heterogenous, stratified sampling may be more 

efficient! 

 

 

SRS example 

• For example: we are interested in characterizing biomass across a 

study area with three forest types, measuring woody plants within 

fixed area plots 

 

1 

3 2 
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FT 1                                               FT 2                                       FT 3 

9 
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• First unit is a probability-based selection, subsequent 
units are not  

• Each unit in the population has the same probability of 
being selected 

• Probabilities of different sets of units being included in the 
sample are not all equal  

• Usually better for sampling across an environmental 
gradient 
• Can be worse if your sample selection coincides with an 

environmental gradient 

• Not advisable if you wish to characterize spatial variability 

 

Systematic selection 
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FT 1                                                FT 2                                       FT 3 

SyRS example 

• For example: we are interested in characterizing biomass across a 
study area with three forest types, measuring woody plants within 
fixed area plots 

1 3 2 

7 5 6 

9 10 11 

4 

8 
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Stratified Random Sampling (StRS) 

Population is subdivided 

o sub-populations are 

sampled (at pre-

determined rates) using 

simple random or 

systematic random 

sampling 

Use when: 

o There are naturally 

occurring mutually exclusive 

groups (strata) in the 

population 

o Strata can be determined 

prior to sample selection 
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FT 1                                                FT 2                                       FT 3 

StRS – example 1 
• For example: we are interested in characterizing biomass across a study 

area with three forest types, measuring woody plants within fixed area 

plots. We sample equally from each FT, though FT2 is smaller. 
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FT 1                                                FT 2                                       FT 3 

StRS – example 2 
• For example: we are interested in characterizing biomass across a study 

area with three forest types, measuring woody plants within fixed area 

plots. We proportionally sample from each FT by area. 
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Comparison of stratified sampling to SRS 

• Tradeoff between increased study cost/ complexity and 
the potential for increased efficiency 
• more accurate population parameter estimate may be obtained 

for the same number of sample units as SRS when the 
variability among strata is maximized and the variability within 
strata is minimized. 

• the same accuracy may be obtained, but with fewer sample 
units 

• The decision to stratify must take into account how the 
cost of stratifying relates to the expected increase in 
estimate accuracy 

 

• NOTE: 
• when modeling data obtained via stratified sampling, the strata 

must be included as a model factor or weight 

• The average and standard error of the stratified data are weighted 

Simple random sampling with sub-sampling 

• Secondary (or sub-) samples are selected randomly or systematically 

within primary samples 

• NOTE: The average and standard error are calculated in a two-stage 
process, using primary sample averages 
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Some types of experimental designs 

• Common Designs 

• Completely randomized design (CRD) 

• Randomized complete block (RCB) 

• Split-Plot Design (SPD) 

• Others (e.g., Latin Square Design)… 

• Methods of treatment application 

• Repeated measures experiments 

• Factorial experiments 

C. Staudhammer 

NOTE that experimental 

design concepts apply to 

both mensurative and 

manipulative experiments 

Irrigation A 

Completely randomized designs (CRD) 
• Treatments are randomly assigned to experimental units 

• Units are randomly selected for the experiment from among the set of 

interest  

• We assume that units are approximately homogeneous 

• E.g., we sample understory biomass in 0.01 ha plots under three 

irrigation regimesI 

Irrigation C Irrigation B 
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What about unbalanced designs? As long as ni are not 

“too different”, we can still use ANOVA techniques, but 

EE DoF = Sni-k   and   Total DoF =Sni - 1 

Completely randomized design – Analysis of 

Variance (ANOVA) table 

Where: k=3 is the number of “treatments”, n=8 is the number of experimental 

units per treatment 

As the number of 

experimental units ↑, 

experimental power ↑ 

•We would analyze this as a simple one-way ANOVA, or 

could (equivalently) use regression techniques 

•Either is termed a General Linear Model (GLM) 

Source Degrees of 

freedom 

(DoF) 

Mean 

Squares 

F test 

Irrigation k-1=2 MSIRR F(2,21)= 

MSIRR/MSE 

Experimental Error k(n-1) = 21 MSE 

Total kn-1 = 23 

What happens when 

the number of 

experimental units ↑? 

Fitting CRD models in R 
> lm.irr <-lm(biomass ~ irrig, data=data.irr) 

> anova(lm.irr) 

> summary(lm.irr) 

> plot(lm.irr) 

> lsmeans(lm.irr, pairwise~irrig) 

 

• The function lm estimates a linear model (Y~X) using data in the 
dataframe data.irr 

• The function anova partitions the variation into its different sources (in 
this case, irrigation and error), and displays F-tests for each effect 

• The function summary gives estimates of the model coefficients, 
standard errors, and t-tests, statistics on the model goodness of fit 

• The function plot produces graphs to verify assumptions  

• NOTE that character-valued X variable(s) are assumed to be 
categorical predictors, whereas numeric-valued X variables are 
assumed to be continuous predictors 

 If your factors are numbered (e.g., 1=blue, 2=red, 3=green), then 
you will have to declare the variable as a factor 
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Fitting CRD models in R - output 

R output 
> lm.irr <-lm(biomass ~ irrig, data=data.irr) 

> anova(lm.irr) 

Analysis of Variance Table 

 

Response: biomass 

           Df  Sum Sq Mean Sq F value    Pr(>F)     

Irrig       2  2021.0  1010.5  40.374    0.0003*** 

Residuals  21  525.26    25.0                       

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 

0.1 ‘ ’ 1 
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Fitting CRD models in R - output 

R output 
> summary(lm.irr) 
 

Call: 

lm(formula = lm(biomass ~ irrig, data = data.irr) 
 

Residuals: 

    Min      1Q  Median      3Q     Max  

-2.9233 -1.2752 -0.2657  1.3976  3.0226  
 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)   2.0210     0.4111   4.926   0.0011 ** 

irrig.B      12.1991     0.6022  20.257  4.1e-08 *** 

Irrig.C      17.9911     0.6022  29.874  1.7e-09 *** 

--- 

 

Residual standard error: 1.09 on 21 degrees of freedom 

Multiple R-squared:  0.9406,    Adjusted R-squared:  0.9375  

F-statistic: 40.4 on 2 and 21 DF,  p-value: 0.0003 

38 

What do 

these fit 

statistics 

tell us? 

Fitting CRD models in R - plots 

R output 
> plot(lm.irr) 
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lm(biomass ~ irrig) 

Fitting CRD models in R – marginal 

means 
R output 
> lsmeans(lm.irr, pairwise ~ irrig) 

 

$lsmeans 

 irrig     lsmean       SE df lower.CL upper.CL 

 A       20.41037 1.762224 56 16.88021 23.94053 

 B       24.77128 1.762224 56 21.24112 28.30143 

 C       23.08582 1.762224 56 19.55566 26.61598 

 

Confidence level used: 0.95  

 

$contrasts 

 contrast  estimate      SE df t.ratio p.value 

 A - B    -4.360907 2.49216 56  -1.750  0.3082 

 A - C    -2.675448 2.49216 56  -1.074  0.7069 

 B - C     1.685459 2.49216 56   0.676  0.9056 

 

P value adjustment: tukey method for comparing a family of 4 
estimates  

 

40 
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What happens if we measure repeatedly 

over time? 
• For example, we: 

• collect multiple observations within a single experimental unit, e.g., 
biomass from m trees within n fixed area plots? 

• measure experimental units at multiple time periods, e.g., biomass on 
n trees in each of t years? 

? Are observations within plots or measured repeatedly by 
year independent? probably not! 

!  And if not, we violate an assumption necessary for 
statistical hypothesis testing 

These are common occurrences in biology and other 
disciplines! 

Can lead to pseudoreplication 

* To appropriately analyze, we need to consider additional 
non-fixed effects 

Models for data correlated over space/ 

time 

• In many situations, researchers collect multiple elements 

of the same fixed area plot 

• E.g., models of biomass as a function of k=3 site qualities: we 

measure n=15 plots that each contain m=4 trees (45x4 trees total) 

 

 

 

Site 1: Plot 1                         Plot 2                            Plot 3                     Plot 4   … 

• E.g., models of biomass at k=3 sites on n=15 trees at m=4 times 

Site 1: time 1                                                     time 2              etc… 

Models for data correlated over space/ 

time 

• We then want to develop models for these elements  

• For tree-level data collected in fixed area plots 

• trees within the same plot are NOT independent; they are likely more alike 

than those in different plots 

• For data collected on the same exact trees over time 

• Measurements on the same tree over time are NOT independent; they are 

likely more alike than those taken on different trees 

• If we ignore these inter-relationships, estimates of the mean will 

still be unbiased, BUT we artificially inflate our DOF and deflate 

the standard errors  we are pretending to have more 

information than we actually have! 

C. Staudhammer Slide 43 

Mixed models for multiple measurements per 

experimental unit  

 Knowledge of these correlations can be used to 

formulate the correct experimental error in our models 

 Moreover, this knowledge can be useful in better 

understanding our data! 

Slide 44 

Mixed models for multiple measurements per 

experimental unit (e.g., fixed area plots) 

• E.g., models of biomass as a function of k=3 site qualities, where we 

measure m=4 trees in each of n=15 plots (60 trees total) 

 

 

• Site 1: Plot 1          Plot 2                       Plot 3                     Plot 4   … 

 

 

Site 2: Plot 1             Plot 2                       Plot 3                     Plot 4   … … 

 

 

Site 2: Plot 1               Plot 2                        Plot 3                     Plot 4   … 
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Fixed area plot model 

Source 
Degrees of 

freedom 

F test 

Site k-1=2 F(2,42)= 

MSS/MSE 

Experimental Error k(n-1) = 42 

Within plot error  nk(m-1)=135 

Total knm-1 = 179 

In the case of k=3 sites 

with m=4 trees per n=15 

plots, each plot is a 

“subject” 

Experimental design Slide 45 

Mixed models for multiple measurements per 

experimental unit (e.g., repeated measures) 
• E.g., models of biomass at k=3 sites on n=15 trees at m=4 

times 

time 1                                                             time 2              

etc… 

 

Site 1: time 1                                                     time 2           

etc… 
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Repeated times model 

Source 
Degrees of 

freedom 

F test 

Site k-1=2 MSS/MSE 

Experimental Error k(n-1) = 42 

time m-1=3 MSt/MSW 

Site x time (k-1)(m-1)=6 MSSxt/MSW 

Within tree error  k(n-1)(m-1)=126 

Total knm-1 = 179 

In the case of k=4 sites 

and m=4 

measurements per 

n=15 trees, each tree is 

a “subject” 

Experimental design Slide 46 
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Mixed models for multiple measurements per 

experimental unit (e.g., repeated measures) 

 The most important aspect of the mixed model is the formulation of the 

F tests 

 The site effect in the model are tested against the Experimental Error, 

whereas time is tested against the within-tree error 

 This ensures that we appropriately account for within subject 

correlations 
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Repeated times model 

Source 
Degrees of 

freedom 

F test 

Site k-1=2 MSS/MSE 

Experimental Error k(n-1) = 42 

time m-1=3 MSt/MSW 

Site x time (k-1)(m-1)=6 MSSxt/MSW 

Within tree error  k(n-1)(m-1)=126 

Total knm-1 = 179 

In the case of k=4 sites 

and m=4 

measurements per 

n=15 trees, each tree is 

a “subject” 

Experimental design Slide 47 

But this assumes our 

times are independent.   

But it is likely that we 

have correlations among 

times within tree… 

How to formulate the appropriate model? 

• The observations are “clustered” within a “subject” (e.g., 

plot for fixed area example, tree for repeated measures 

example) 

the observations, and their residuals, are not 

independent, but correlated.   

• There are two ways to deal with this correlation 

• A Marginal or Population Averaged approach.  

• A Mixed Model 

48 

The Marginal (Population Averaged) 

approach 
• Instead of modeling correlation among residuals,  the 

covariance structure of the residuals is modeled 

• While in linear models, observations are assumed independent, in 

marginal models, residuals from a single subject are assumed 

related.   

• Covariances among subjects are assumed non-zero 

 covariances among residuals from each subject are estimated 

• not truly a mixed model, although you can use mixed 

methods to estimate them.   

• (In SAS or SPSS, you use a repeated statement instead 

of a random statement) 
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The Mixed Model approach 

• The model is altered by controlling for subject as a factor 

in the model  

• Residuals are re-defined as the distance between the 

observed value and the mean value for that subject 

• Subjects are not fixed effects in the model but instead are 

treated as a random effect 

• This uses less degrees of freedom 

50 

Fixed versus random effects 
• FIXED effects 

• An effect is fixed if all possible levels about which inferences will be 

made are represented 

• A level of a fixed effect is an unknown constant, which does not vary 

• If we were to repeat the study, we would choose the same factor 

levels 

• Examples 

• Regression models are fixed effects models, as X is assumed fixed 

• Most effects that we purposely study are considered fixed 

• RANDOM effects 

• Effects are random if the levels represent only a random sample of 
possible levels 

• Sub-sampling, clustering, and random selection of treatments result 
in random effects in models 

• If we were to repeat the study, a different set of effect levels would be 
obtained 

 

How to fit a mixed model with subsamples? 

Recall: biomass as a function of k=3 site qualities, where we measure 
m=4 trees in each of n=15 plots (60 trees total)  
> library(nlme) 

> data.sq$plot <- as.factor(data.sq$plot) 

> lme.sq <-lme(biomass ~ quality, random =~1|plot, data=data.sq) 

> anova(lme.sq) 

> summary(lme.sq) 

> plot(lme.sq) 

 

• The function lme estimates a linear mixed effecs model (Y~X) using data 
in the dataframe data.sq 

• A random effect is added to account for grouping of trees within plots 
•  ~1|plot fits a model with a random intercept for each plot 

• The functions summary, anova, plot are used in the same manner as with 
the simpler model 

NOTE: in order for this to work properly in R, you must have unique plot 
numbers, e.g., you cannot have a plot 1 in each site quality!! 

 

52 
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R output: mixed model with subsamples 
> anova(lm.sq) 

            numDF  denDF   F-value p-value 

(Intercept)     1    135 29.516138  <.0001 

quality         2    42   4.722407  0.0152 

 

> summary(lme.sq) 

Linear mixed-effects model fit by REML 

 Data: data.sq  

       AIC     BIC    logLik 

  344.7039 342.842 -166.3519 
 

Random effects: 

 Formula: ~1 | plot 

        (Intercept) Residual 

StdDev:    1.582772 4.060305 
 

Fixed effects: biomass ~ quality  

                Value Std.Error DF     t-value p-value 

(Intercept)  1.212249  1.264953 135  0.9583354  0.3437 

qualityB     3.316992  1.788913  42  1.8541942  0.0822 

qualityC    -0.029265  1.788913  42 -0.0163590  0.9872 

53 

Note the 

difference in 

denDF  

Estimates of the 

variance among 

plots versus 

within plots 
These 

tests are 

for the 

effect 

versus 

the base 

(A) 

R output: mixed model with subsamples 
 Correlation:  

           (Intr) quality.B 

qualityB  -0.707               

qualityC  -0.707     0.500        

 

Standardized Within-Group Residuals: 

       Min         Q1        Med         Q3        Max  

-1.8651688 -0.6058632 -0.0108787  0.7179328  1.8724672  

 

Number of Observations: 60 

Number of Groups: 12  

 

> plot(lme.sq) 
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This is not the correlation between 

the variables. It is the expected 

correlation of the model coefficients. 

This might indicate multicollinearity; 

it indicates that if you did the 

experiment again and the coefficient 

for A got smaller, it is likely that those 

of B and C would  get larger 

This graph 

should have no 

pattern 

How to fit a mixed model with repeated times? 

Recall: biomass at k=3 sites on n=15 trees at m=4 times 
> library(nlme) 

> data.rm$time <- as.factor(data.rm$time) 

> lme.rm <-lme(biomass ~ site*time, random =~1|tree, 
data=data.rm) 

> anova(lme.rm) 

> summary(lme.rm) 

> plot(lme.rm) 

 

• The function lme estimates a linear mixed effecs model (Y~X) 
using data in the dataframe data.rm 

• site*time = site + time + site:time 

• A random effect is added to account for grouping of 
measurements on the same tree 

• The functions summary, anova, plot are used in the same 
manner as with the simpler model 
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R output: mixed model with repeated times 
> anova(lm.rm) 

            numDF denDF  F-value p-value 

(Intercept)     1   126 92.46865  <.0001 

site            2    42  3.59848  0.0189 

time            3   126 35.55504  <.0001 

site:time       6   126  0.50806  0.8673 
 

> summary(lm.rm) 

Linear mixed-effects model fit by REML 

 Data: data.rm  

       AIC      BIC    logLik 

  1172.093 1233.503 -428.0465 
 

Random effects: 

 Formula: ~1 | tree 

        (Intercept) Residual 

StdDev:    3.448301 2.019734 

Fixed effects: biomass ~ site * time  

                  Value Std.Error  DF  t-value p-value 

(Intercept)    0.733993 1.0318303 126 0.711351  0.4779 

siteB          1.017526 1.4592283  42 0.697304  0.4885 

siteC          3.925862 1.4592283  42 2.690368  0.0094 

time2          2.275080 0.7375026 126 3.084843  0.0024 

time3          2.629211 0.7375026 126 3.425019  0.0005 

time4          2.667666 0.7375026 126 3.617162  0.0004 

siteB:time2    0.375345 1.0429862 126 0.359876  0.7194   ... 
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R output: mixed model with repeated times - 2 

Correlation:  

               (Intr)  siteB  siteC  time2  time3  time4  sitB:2 sitC:2  ... 

siteB          -0.623                                                         

siteC          -0.623  0.200                                                  

time2          -0.357  0.253  0.253                                     

time3          -0.357  0.253  0.253  0.200                             

time4          -0.357  0.253  0.253  0.200  0.200                      

siteB:time2     0.253 -0.357 -0.179 -0.623 -0.354 -0.354               

siteC:time2     0.253 -0.179 -0.357 -0.623 -0.354 -0.354  0.200        

siteB:time3     0.253 -0.357 -0.179 -0.354 -0.707 -0.354  0.200  0.100 

siteC:time3     0.253 -0.179 -0.357 -0.354 -0.707 -0.354  0.250  0.200 ... 

... 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-2.31861551 -0.58095354 -0.05834473  0.53737553  2.04025551  

 

Number of Observations: 180 

Number of Groups: 12  

 

> plot(lm.rm) 

57 

Are random intercepts enough? 

Random intercepts model 

• Intercepts are allowed to vary 

• biomass is predicted by an intercept that varies across trees 

• assumes that slopes are fixed (the same pattern across time) 

• information about intra-subject correlations are helpful in determining 
whether there is correlation among measurements on the same 
subject 

Random slopes model 

• Slopes are allowed to vary 

• slopes are different across trees 

• assumes that intercepts are fixed 

Random intercepts and slopes model 

• includes both random intercepts and random slopes 

• most complex 

• both intercepts and slopes are allowed to vary across trees, meaning 
that they are different across times 

58 
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How to fit a mixed model with random 

slope and intercept 
Recall: biomass at k=3 sites on n=15 trees at m=4 times 
> lme.rm <-lme(biomass ~ site*time, random =~time|tree, data=data.rm) 

> anova(lme.rm) 

      numDF denDF  F-value p-value 

(Intercept)    1   126 42.96620  <.0001 

site           2    42  3.44695  0.0226 

time           3   126 44.31872  <.0001 

site:time      6   126  0.63711  0.7642 

> summary(lme.rm) 

Linear mixed-effects model fit by REML 

 Data: data.a.rm  

       AIC      BIC    logLik 

  1174.107 1266.222 -560.0537 

... 

                  Value Std.Error  DF  t-value p-value 

(Intercept)    0.733993 0.9333719 126 0.786389  0.4327 

siteB          1.017526 1.3199872  42 0.770860  0.4440 

siteC          3.925862 1.3199872  42 2.974166  0.0043 

time2          2.275080 0.8674875 126 2.622608  0.0095 

time3          2.629211 0.6337064 126 4.148941  0.0001 

time4          2.667666 0.6950092 126 3.838318  0.0002 

59 

With only random intercept:  

        numDF denDF F-val 

(Intercept)  1   126 92.46 

site         2    42  3.59 

time         3   126 35.55 

site:time    6   126  0.50 

Does the AIC indicate a better model? 

The estimates 

are the same, but 

the standard 

errors are very 

different! 

What correlation pattern do we expect 

among observations on the same subject? 
• The models we fit assumed a compound symmetric 

correlation structure (CS) among measurements taken on 

the same subject (trees in the same plots or times on the 

same tree) 

• What if we think measurements taken closer together in 

time/space might be more correlated than those taken 

farther apart? 
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General form of a variance-covariance 

matrix 
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Diagonal elements are the variances among observations 

from different subjects taken at the same time 

Off-diagonal elements are the co-variances between 

observations taken at different times 

Variance components – type matrix (VC) 

In a fixed effect model, we assume:  

•variances among observations from different subjects taken 

at the same time (diagonal elements) are equal 

(homoscedastic!)  

•co-variances between observations taken at different times 

(off-diagonal elements) are zero (independent!) 
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Compound Symmetric (CS) Variance-

covariance matrix 

•Variances among observations from different subjects taken 

at the same time (diagonal elements) are the equal 

(homoscedastic!) 

•Co-variances between observations taken at different times 

(off-diagonal elements) are equal 

 Regardless of time between measurements, observations 

from same subject are equally correlated 
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Autoregressive order 1 (AR(1)) variance-

covariance structure 
• Variances among obs from different subjects taken at the 

same time (diag. elements) are the equal 

(homoscedastic!) 

• Covariances between obs taken at different times (off-

diag. elements)  are correlated, with constant decay  

 

 





















S







1   

   

1   

   1

321

22

12

2









nnn

n

n







 Correlations 
decrease as 
time between 
obs. increases 

Add to lme call: corr=corAR1()  
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What if our experimental/sampling area is 

not homogenous? 

• Blocking 

• A block is a group of homogeneous experimental 

units 

• Blocks are chosen so as to maximize variation 

among blocks with the aim of minimizing the variation 

within blocks 

• Reasons for blocking 

• To remove block-to-block variation from the 

experimental error (which should increase precision) 

• To allow more uniform treatment comparisons 

• To allow the researcher to sample a wider range of 

conditions 

Blocking set-up example #1: 

4 treatments and 3 blocks 

• At least one replication is grouped in a homogeneous 

area 

C 

C 

C 

Blocked 

replication 

A B D 

A 

A 

B 

B 

D 

D 

A A 

A 

B 

B 

B 

C C 

C 

D 

D 

D 

Just replication 

(i.e., CRD) 

Block #1 

 

Block #2 

 

Block #3 

Blocking set-up example #2: 

4 treatments, 3 blocks, and 3 replicates 
Criteria for blocking 
• Proximity or known patterns of variation in the field 

• gradients due to fertility, soil type 

• animals (experimental units) in a pen (block), or plants in a 
greenhouse 

• Time 
•  season, time of planting / harvesting 

• Management of experimental tasks / Control of 
observer error 
• individuals collecting data 

• runs in the laboratory 

• Physical characteristics 
• Height class, maturity level 

• Natural groupings 
• branches (experimental units) on a tree (block) 

Advantages of the Randomized Complete 

Block (RCB) Design 

• Can remove site variation from experimental error and 

thus increase precision 

• When an operation cannot be completed on all plots at 

one time, can be used to remove variation between “runs” 

• By placing blocks under different conditions, it can 

broaden the scope of the trial  

• Can accommodate any number of treatments and any 

number of blocks, but each treatment should be replicated 

the same number of times in each block 

• Statistical analysis is fairly simple 

Disadvantages of the RCB 
• Missing data can cause some difficulty in the analysis 

• If there is more than one source of unwanted variation, the 

design can be less efficient 

• If the plots are uniform, then RCB is less efficient than CRD 

• As treatment or entry numbers increase, more 

heterogeneous area is introduced and effective blocking 

becomes more difficult (a Split plot or lattice designs may 

be more appropriate) 

• Blocks are not a fixed effect, and therefore inference about 

particular blocks is inappropriate (better to use a factorial 

analysis) 
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Randomized complete block designs (RCB) 
• Blocks are chosen so that the experimental material within block 

is homogeneous – and generally we do NOT care to make 

inferences about blocks (it is a ‘nuisance’ variable) 

• Treatments are randomly assigned within block (restricted 

randomization) 

Irrigation I       Irrigation III             Irrigation I 

Irrigation II       Irrigation II              Irrigation III 

Irrigation I      Irrigation III             Irrigation II 

1                    2                                                 3 

1                    2                                                 3 

1                    2                                                3 

  BLOCK 1                                BLOCK 2                                   BLOCK 3 

Randomized complete block designs – 

ANOVA table 

Experimental error is partitioned so that we separate 

out block-to-block variation  lose DOF but 

(hopefully) decrease Exp.Error 

 We would analyze as a two-way ANOVA – also a GLM 

Source Degrees of 

freedom 

Mean 

Squares 

F test 

Block n-1=2 MSB 

Irrigation k-1=2 MSIRR F(2,4)= 

MSIRR/MSE 

Experimental Error (k-1)(n-1) = 4 MSE 

Total kn-1 = 8 

How to fit a mixed model with blocking? 

> data.rcb$block <- as.factor(data.rcb$block) 

> lme.rcb <-lme(biomass ~ irr, random =~1|block/irr, 

data=data.rcb) 

> anova(lme.rcb) 

> summary(lme.rcb) 

> plot(lme.rcb) 

 

• The function lme estimates a linear mixed effects model 
(Y~X) using data in the dataframe data.rcb 

• Block is not a fixed effect 

• Irrigation types are nested inside each block in the 
random effect  

• The functions summary, anova, plot are used in the same 
manner as with the other analyses 
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Split plot (SP) design 

• Developed by agronomists to save money on experimental 

layout where there are two or more factors involved, and 

where it is much easier to apply one treatment to a large 

area, e.g.:   

• we want to test effect of burning/not burning in combination with two 

harvesting methods (it is difficult to burn just a small area), or 

• we want to test two fertilizers and three irrigation regimes (its much 

easier to control irrigation over a large area) 

• Restriction on randomization is in two parts: first the main 

plot is randomized, then sub-plot is randomized within it 

• Can be used with any basic designs (CRD, RCB, etc.) 

Split plot design layout over RCB – 

irrigation and fertilization example 
• E.g., we sample understory biomass in 0.01 ha plots 

under three irrigation and two fertilization regimes 

• We have 3 blocks we can use 

• We wish to study three levels of irrigation and two levels 

of fertilizer 

 We could do a factorial (fertilizer x irrigation) over an 

RCB…. 

• BUT It is very difficult to irrigate a small area 

• We decide to first allocate areas of each block to the three 

irrigation regimes, then overlay fertilizer treatments over 

each irrigation plot 

Split plot design layout over RCB – 

irrigation and fertilization example 

• First, set out irrigation treatments in main plots 

 

 
• Then overlay fertilizer treatments over each irrigation plot 

 
 

 

• The final 

layout is then:  

Block 1 i1 i2 i3 
Block 2 i1 i3 i2 
Block 3 i3 i1 i2 

 

Block 1 f1 f2 f2 f1 f1 f2 

Block 2 f2 f1 f1 f2 f2 f1 

Block 3 f2 f1 f1 f2 f1 f2 
 

Block 1 i1f1 i1f2 i2f2 i2f1 i3f1 i3f2 

Block 2 i1f2 i1f1 i3f1 i3f2 i2f2 i2f1 

Block 3 i3f2 i3f1 i1f1 i1f2 i2f1 i2f2 
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Issues with Split plot Designs 

• There are two different types or sizes of experimental units 

• Main treatment effects are estimated from the whole 
plots  

• Sub-plot and interaction of whole and sub-plot effects are 
estimated from sub-plots 

the main and sub-plots have different precision 

• Observations from different subplots in the same whole 

plot may be correlated 

• The correlation between any two subplots on the same 
whole plot is equal across plots 

• The correlation between observations in different whole 
plots is zero 

 the covariance matrix of observations within a whole plot 
is compound symmetric 

Issues with Split plot Designs – cont’d 

the main and sub-plots have different precision 

the covariance matrix of observations within a whole plot 

is compound symmetric 

 

Implications: 

• The partitioning of the sums of squares is altered 

• The experimental error is split in to two parts: those for 

the underlying design’s main treatment effects, and 

those for the sub-plots  

• The main treatment SS and tests remain unchanged 

from the underlying design 

Analysis of Variance Table (for Split-Plot 

CRD)  

Source DoF SS MS F 

Treatment (Main) k-1 SSTR MSTR  

Exp. Err. #1 k(n-1) SSE1 MSE1  

Subunit m-1 SSS MSS  

Treat. x Subunit (k-1)(m-1) SSTxS MSTxS  

Exp. Err. #2 k(n-1)(m-1) SSE2 MSE2  

Total nkm-1 SST   
 

The only 

thing that 

changes is 

lack of block 

& EE#1 dof 

If we have a ‘fixed effects’ model, 

then main treatments are tested 

against EE#1 and subunits are 

tested against EE#2  

How do we 

construct F 

tests? 

This looks 

just like our 

repeated 

measures 

example! 

Conclusions: Why does design matter? 

• Experimental designs have HUGE impacts on how we 
collect and analyze the data 

• How we set up the experiment controls: 
What effects are testable 

What error terms are appropriate 

The number of ‘true replicates’ 

• Controls are meant to allow us to eliminate as many 
artifacts as possible introduced by our experimental 
procedure, e.g.: 
• In drug studies, placebo group gets a sugar pill/saline shot in order 

to simulate the same stress an those would undergo while taking the 
real drug 

• Animals that are handled often undergo stress, so those that are 
‘controls’ should get handled as well 

 

Take home messages 

• In the design stage, be sure to be very clear about how 

you intend to collect the data! 

• Draw a picture 

• Make a table 

• Consider ‘confounding factors’, such as aquaria or greenhouse 

space or other things that might introduce bias 

• Using well-studies designs enables us to easily analyze 

data and construct uncertainty estimates 


