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• The first step in rigorous exploration is formulating 
testable hypotheses or posing critical research questions

• To apply the scientific method, we must collect data that 
allow us to discriminate between different hypotheses

 we collect data to:

• estimate values of characteristics of the parent population 

• conduct hypothesis tests

• Before we collect data, we plan and design data collection 
procedures in support of those hypotheses and/or 
questions

• Data should be collected with a purpose
• Independent variables (for explanation)

• Dependent variables (for inference)

 Your research hypotheses/questions define what variables need 
to be measured
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The importance of planning your study design



Requirements for statistically defensible 

analysis of data

• Randomization

• Why?

• Replication

• Why?

• Design Control

• What does this mean?

Assures that our own 

biases do not enter the 

data.

Necessary to meet 

assumption of required 

by most statistical tests

Permits calculation 

of experimental 

error,

“Insurance” against 

chance events,

Averages out 

“noise”
Use homogeneous 

experimental/sampling units,

OR If material is heterogeneous, 

then use blocking
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• Random sampling ensures that population parameter 

estimates are unbiased, e.g.:

• Plants randomly selected from population of interest

• Fixed area plot locations randomly selected from within study area

• If we do not obtain a random sample, we reduce our 

inferential population

• Experimental units should be randomly allocated to 

treatment groups

Randomization
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• In order to analyze data, we must have multiple 

observations of each factor combination we are interested 

in

• If we have one factor we are interested in (e.g. two species), we 

must have at least two observations per species (4 obs) in order to 

assess the variability within species and between species

• BUT NOTE: two is dangerous – what if one individual dies?

• Replication reduces the chances that we have inherent 

consistent differences in experimental units that receive 

the same treatment

• i.e., we can be more confident in attributing differences to 

treatments rather than other factors

Replication
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• Biologists in particular often find it difficult to replicate 
the exact same conditions, e.g.:
• Are two pots of soil the same?

• Are two rivers the same?

• To properly replicate conditions, “pseudo-replicates” 
are often chosen

• Pseudoreplication also arises when observations are 
not independent
• Can arise over space, time, or can be due to genetics

• Independence is necessary for basic statistical 
techniques (but can be mitigated with more complex 
methods)

Replication, pseudoreplication, and 

independence
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• Are these really replicates?

1.If the scale is small (e.g., 1 ha), 

these are not true replicates, but they 

are as good as it gets in ecology!

2.Since the fire was applied to the 

entire area, we really have only one

true replicate (in each of unburned 

and burned areas) with 

pseudoreplicates, or subsamples

 We need multiple fires in order to 

appropriately evaluate impact of fire 

in general; otherwise, our inference 

is only to this fire

Example: sampling from burned and 

unburned areas

burned

Unburned



What is meant by “experimental design”?

Controls how we apply treatments to observational 
units, or select data from different populations
 Controls how we analyze the data

• is often intimately related to the sampling design under which the 
data was collected

• E.g., we want to describe longleaf pine regeneration in a 
90 ha area with 3 understory types (20 ha in shrub oak, 
30 ha in wiregrass, 40 ha in mixed grass/shrub oak)

• each understory type covers a contiguous and non-
overlapping area, so we choose 3 1-ha areas, and within 
each install 9 grid plots 

• OR, each understory type is patchy over our study area; 
we choose 3 random areas of each type, and within each 
install 9 grid plots



One experimental design option



Another experimental design option



What is meant by “experimental design”? 

- 2
Controls how we apply treatments to observational 
units, or select data from different populations
 Controls how we analyze the data

• is often intimately related to the sampling design under which the 
data was collected

• E.g., we want to describe disease presence in frogs 
under three moisture regimes (9 each of low, medium, 
high), and have 3 blocks of space available (in three  
different locations)

• In block #1, we observe 9 frogs with low moisture, in block 
#2, we observe 9 frogs with medium moisture, and in block 
#3, we observe 9 frogs with high moisture

• OR, 3 frogs with each of the moisture regimes in each of 
block #1, #2, #3



One experimental design option
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Another experimental design option

How are these designs different?  Under what circumstances is each design 

more appropriate/more efficient
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Another experimental design option



Note: most tests are robust to moderate violations

1. Samples are from a ~Normal population

• If population is very skewed or multi-modal, tests not valid

• Transformation can often fix this

2. Samples are from homoscedastic (equal variance) 

populations

• Often, fixing #1 will fix this problem

3. Samples are randomly selected from the population

• considered in the design stage of your experiment

4. Samples are independent

• If samples are not independent, however, there are often ways to 

mitigate it in the analysis process

Assumptions of “traditional” statistical 

hypothesis testing
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Some types of experimental designs

• Common Designs

• Completely randomized design (CRD)

• Randomized complete block (RCB)

• Split-Plot Design (SPD)

• Others (e.g., Latin Square Design)…

• Methods of treatment application

• Repeated measures experiments

• Factorial experiments

C. Staudhammer

NOTE that experimental 

design concepts apply to 

both mensurative and 

manipulative experiments



Irrigation A

Completely randomized designs (CRD)
• Treatments are randomly assigned to experimental units

• Units are randomly selected for the experiment from among the set of 

interest 

• We assume that units are approximately homogeneous

• E.g., we sample understory biomass (kg) in 0.01 ha plots under 

three irrigation regimes

Irrigation CIrrigation B



What about unbalanced designs? As long as ni are not 

“too different”, we can still use ANOVA techniques, but 

EE DoF = Sni-k   and   Total DoF =Sni - 1

Completely randomized design – Analysis of 

Variance (ANOVA) table

Where: k=3 is the number of “treatments”, n=8 is the number of experimental 

units per treatment

As the number of 

experimental units ↑, 

experimental power ↑

•We would analyze this as a simple one-way ANOVA, or 

could (equivalently) use regression techniques

•Either is termed a General Linear Model (GLM)

Source Degrees of 

freedom 

(DoF)

Mean 

Squares

F test

Irrigation k-1=2 MSIRR F(2,21)= 

MSIRR/MSE

Experimental Error k(n-1) = 21 MSE

Total kn-1 = 23

What happens when 

the number of 

experimental units ↑?



Fitting CRD models in R
> lm.irr <-lm(biomass ~ irrig, data=data.irr)

> anova(lm.irr)

> summary(lm.irr)

> plot(lm.irr)

> lsmeans(lm.irr, pairwise~irrig)

• The function lm estimates a linear model (Y~X) using data in the 
dataframe data.irr

• The function anova partitions the variation into its different sources (in 
this case, irrigation and error), and displays F-tests for each effect

• The function summary gives estimates of the model coefficients, 
standard errors, and t-tests, statistics on the model goodness of fit

• The function plot produces graphs to verify assumptions 

• The function lsmeans produces marginal means for each effect level

• NOTE that character-valued X variable(s) are assumed to be 
categorical predictors, whereas numeric-valued X variables are 
assumed to be continuous predictors

 If your factors are numbered (e.g., 1=blue, 2=red, 3=green), then 
you will have to declare the variable as a factor
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Fitting CRD models in R - output

R output
> lm.irr <-lm(biomass ~ irrig, data=data.irr)

> anova(lm.irr)

Analysis of Variance Table

Response: biomass

Df Sum Sq Mean Sq F value    Pr(>F)    

Irrig 2  2021.0  1010.5  40.374    0.0003***

Residuals 21  525.26    25.0                      

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 

0.1 ‘ ’ 1

18

What does this tell us?



Fitting CRD models in R - output

R output
> summary(lm.irr)

Call:

lm(formula = lm(biomass ~ irrig, data = data.irr)

Residuals:

Min      1Q  Median      3Q     Max 

-2.9233 -1.2752 -0.2657  1.3976  3.0226 

Coefficients:

Estimate Std. Error t value Pr(>|t|)    

(Intercept)   2.0210     0.4111   4.926   0.0011 **

irrig.B 12.1991     0.6022  20.257  4.1e-08 ***

Irrig.C 17.9911     0.6022  29.874  1.7e-09 ***

---

Residual standard error: 1.09 on 21 degrees of freedom

Multiple R-squared:  0.9406,    Adjusted R-squared:  0.9375 

F-statistic: 40.4 on 2 and 21 DF,  p-value: 0.0003

19

What do 

these fit 

statistics 

tell us?



Fitting CRD models in R - plots

R output
> plot(lm.irr)

20

lm(biomass ~ irrig)

What does this tell us?



Fitting CRD models in R – marginal 

means
R output
> lsmeans(lm.irr, pairwise ~ irrig)

$lsmeans

irrig lsmean SE df lower.CL upper.CL

A 2.0216 1.762224 21 -1.43252  5.47452

B  14.2201 1.762224 21 10.76658 17.67362

C       20.0121 1.762224 21 16.55855 23.46562

Confidence level used: 0.95 

$contrasts

contrast  estimate      SE df t.ratio p.value

A - B    -12.19911 2.49216 21  -4.895  7.67e-05

A - C    -17.89117 2.49216 21  -7.219  4.10e-07

B - C     -5.79252 2.49216 21  -2.324  0.030225

P value adjustment: tukey method for comparing a family of 4 
estimates 
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What does this tell us?

There is a 95% 

probability that the true 

mean understory 

biomass under irrigation 

C is between 16.56 and 

23.47 kg

What does this tell us?

There are significant 

differences between 

understory biomass 

values in A vs B and C 

(p<0.01) and B vs C 

(p<0.05) 



What happens if we measure multiple 

elements in the same plot?

• In many situations, researchers collect data on multiple 

elements in the same fixed area plot

• E.g., models of biomass as a function of k=3 site qualities: we 

measure n=15 plots that each contain m=4 trees (45x4 trees total)

Site 1: Plot 1                         Plot 2                            Plot 3                     Plot 4   …

Site 2: Plot 1                         Plot 2                            Plot 3                     Plot 4   …



What happens if we measure the same 

element repeatedly over time?

• In many situations, researchers collect data on the same 

elements over time

• E.g., models of biomass at k=3 sites on n=15 trees at m=4 times

Site 1: time 1                                                     time 2 etc…

Site 2: time 1                                                     time 2 etc…



What happens if we measure repeatedly 

over time, or in the same plot?
? Are observations within plots or measured repeatedly by 

year independent? probably not!

!  And if not, we violate an assumption necessary for 

statistical hypothesis testing

These are common occurrences in ecology and other 

disciplines!

Can lead to pseudoreplication

* To appropriately analyze, we need to consider additional 

non-fixed effects



Models for data correlated over space/ 

time

• We then want to develop models for these elements 

• For tree-level data collected in fixed area plots

• trees within the same plot are NOT independent; they are likely more alike 

than those in different plots

• For data collected on the same exact trees over time

• Measurements on the same tree over time are NOT independent; they are 

likely more alike than those taken on different trees

• If we ignore these inter-relationships, estimates of the mean will 

still be unbiased, BUT we artificially inflate our DOF and deflate 

the standard errors  we are pretending to have more 

information than we actually have!

C. Staudhammer Slide 25



Mixed models for multiple measurements per 

experimental unit 

 Knowledge of these correlations can be used to 

formulate the correct experimental error in our models

 Moreover, this knowledge can be useful in better 

understanding our data!

Slide 26



Mixed models for multiple measurements per 

experimental unit (e.g., fixed area plots)

• E.g., models of biomass as a function of k=3 site qualities, where we 

measure m=4 trees in each of n=15 plots (60 trees total)

• Site 1: Plot 1          Plot 2                       Plot 3                     Plot 4   …

Site 2: Plot 1             Plot 2                       Plot 3                     Plot 4   … …

Site 3: Plot 1               Plot 2                        Plot 3                     Plot 4   …

Slide 27

Fixed area plot model

Source
Degrees of 

freedom

F test

Site k-1=2 F(2,42)= 

MSS/MSE

Experimental Error k(n-1) = 42

Within plot error nk(m-1)=135

Total knm-1 = 179

In the case of k=3 sites with 

m=4 trees per n=15 plots, each 

plot is a “subject”

Experimental design Slide 27



Mixed models for multiple measurements per 

experimental unit (e.g., repeated measures)
• E.g., models of biomass at k=3 sites on n=15 trees at m=4

times

time 1                                                             time 2

etc…

Site 1: time 1                                                     time 2

etc…

C. Staudhammer Slide 28

Repeated times model

Source
Degrees of 

freedom

F test

Site k-1=2 MSS/MSE

Experimental Error k(n-1) = 42

time m-1=3 MSt/MSW

Site x time (k-1)(m-1)=6 MSSxt/MSW

Within tree error k(n-1)(m-1)=126

Total knm-1 = 179

In the case of k=4 sites 

and m=4 

measurements per 

n=15 trees, each tree is 

a “subject”

Experimental design Slide 28



Mixed models for multiple measurements per 

experimental unit (e.g., repeated measures)

 The most important aspect of the mixed model is the formulation of the 

F tests

 The site effect in the model are tested against the Experimental Error, 

whereas time is tested against the within-tree error

 This ensures that we appropriately account for within subject 

correlations

C. Staudhammer Slide 29

Repeated times model

Source
Degrees of 

freedom

F test

Site k-1=2 MSS/MSE

Experimental Error k(n-1) = 42

time m-1=3 MSt/MSW

Site x time (k-1)(m-1)=6 MSSxt/MSW

Within tree error k(n-1)(m-1)=126

Total knm-1 = 179

In the case of k=4 sites 

and m=4 

measurements per 

n=15 trees, each tree is 

a “subject”

Experimental design Slide 29

But this assumes our 

times are independent.  

But it is likely that we 

have correlations among 

times within tree…



How to formulate the appropriate model?

• The observations are “clustered” within a “subject” (e.g., 

plot for fixed area example, tree for repeated measures 

example)

the observations, and their residuals, are not 

independent, but correlated.

• There are two ways to deal with this correlation

• A Marginal or Population Averaged approach.

• A Mixed Model

30



The Marginal (Population Averaged) 

approach
• Instead of modeling correlation among residuals,  the 

covariance structure of the residuals is modeled

• While in linear models, observations are assumed independent, in 

marginal models, residuals from a single subject are assumed 

related.

• Covariances among subjects are assumed non-zero

 covariances among residuals from each subject are estimated

• not truly a mixed model, although you can use mixed 

methods to estimate them.

• (In SAS or SPSS, you use a repeated statement instead 

of a random statement)
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The Mixed Model approach

• The model is altered by controlling for subject as a factor 

in the model 

• Residuals are re-defined as the distance between the 

observed value and the mean value for that subject

• Subjects are not fixed effects in the model but instead are 

treated as a random effect

• This uses less degrees of freedom

32



Fixed versus random effects
• FIXED effects

• An effect is fixed if all possible levels about which inferences will be 

made are represented

• A level of a fixed effect is an unknown constant, which does not vary

• If we were to repeat the study, we would choose the same factor 

levels

• Examples

• Regression models are fixed effects models, as X is assumed fixed

• Most effects that we purposely study are considered fixed

• RANDOM effects

• Effects are random if the levels represent only a random sample of 
possible levels

• Sub-sampling, clustering, and random selection of treatments result 
in random effects in models

• If we were to repeat the study, a different set of effect levels would be 
obtained



How to fit a mixed model with subsamples?

Recall: biomass as a function of k=3 site qualities, where we measure 
m=4 trees in each of n=15 plots (60 trees total)
> library(nlme)

> data.sq$plot <- as.factor(data.sq$plot)

> lme.sq <-lme(biomass ~ quality, random =~1|plot, data=data.sq)

> anova(lme.sq)

> summary(lme.sq)

> plot(lme.sq)

• The function lme estimates a linear mixed effects model (Y~X) using data 
in the dataframe data.sq

• A random effect is added to account for grouping of trees within plots
• ~1|plot fits a model with a random intercept for each plot

• The functions summary, anova, plot are used in the same manner as with 
the simpler model

NOTE: in order for this to work properly in R, you must have unique plot 
numbers, e.g., you cannot have a plot 1 in each site quality!!

34



R output: mixed model with subsamples
> anova(lm.sq)

numDF denDF F-value p-value

(Intercept)     1    135 29.516138  <.0001

quality         2    42   4.722407  0.0152

> summary(lme.sq)

Linear mixed-effects model fit by REML

Data: data.sq

AIC     BIC    logLik

344.7039 342.842 -166.3519

Random effects:

Formula: ~1 | plot

(Intercept) Residual

StdDev:    1.582772 4.060305

Fixed effects: biomass ~ quality 

Value Std.Error DF   t-value p-value

(Intercept)  1.212249  1.264953 135  0.9583354  0.3437

qualityB 3.316992  1.788913 42  1.8541942  0.0822

qualityC -0.029265  1.788913 42 -0.0163590  0.9872

35

Note the difference 

in denDF.

DoF for EE = 42 

Estimates of the 

variance among 

plots versus 

within plots
These 

tests are 

for the 

effect 

versus 

the base 

(A)



R output: mixed model with subsamples
Correlation: 

(Intr) quality.B

qualityB -0.707              

qualityC -0.707  0.500       

Standardized Within-Group Residuals:

Min         Q1        Med         Q3        Max 

-1.8651688 -0.6058632 -0.0108787  0.7179328  1.8724672 

Number of Observations: 60

Number of Groups: 12 

> plot(lme.sq)

36

This is not the correlation between 

the variables. It is the expected 

correlation of the model coefficients. 

This might indicate multicollinearity; 

it indicates that if you did the 

experiment again and the coefficient 

for A got smaller, it is likely that those 

of B and C would  get larger



How to fit a mixed model with repeated times?

Recall: biomass at k=3 sites on n=15 trees at m=4 times
> library(nlme)

> data.rm$time <- as.factor(data.rm$time)

> lme.rm <-lme(biomass ~ site*time, random =~1|tree, 
data=data.rm)

> anova(lme.rm)

> summary(lme.rm)

> plot(lme.rm)

• The function lme estimates a linear mixed effects model (Y~X) 
using data in the dataframe data.rm

• site*time = site + time + site:time

• A random effect is added to account for grouping of 
measurements on the same tree

• The functions summary, anova, plot are used in the same 
manner as with the simpler model

37



R output: mixed model with repeated times
> anova(lm.rm)

numDF denDF F-value p-value

(Intercept)     1   126 92.46865  <.0001

site            2    42  3.59848  0.0189

time            3   126 35.55504  <.0001

site:time 6   126  0.50806  0.8673

> summary(lm.rm)

Linear mixed-effects model fit by REML

Data: data.rm 

AIC      BIC    logLik

1172.093 1233.503 -428.0465

Random effects:

Formula: ~1 | tree

(Intercept) Residual

StdDev:    3.448301 2.019734

Fixed effects: biomass ~ site * time 

Value Std.Error DF  t-value p-value

(Intercept)    0.733993 1.0318303 126 0.711351  0.4779

siteB 1.017526 1.4592283  42 0.697304  0.4885

siteC 3.925862 1.4592283  42 2.690368  0.0094

time2          2.275080 0.7375026 126 3.084843  0.0024

time3          2.629211 0.7375026 126 3.425019  0.0005

time4          2.667666 0.7375026 126 3.617162  0.0004

siteB:time2    0.375345 1.0429862 126 0.359876  0.7194 ...
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Note the difference 

in denDF.

DoF for EE of site 

= 42 

Estimates of the 

variance among 

trees versus 

within trees

These tests 

are for the 

effect versus 

the base site 

(A) and base 

time (1)



R output: mixed model with repeated times - 2

Correlation: 

(Intr) siteB siteC time2  time3  time4  sitB:2 sitC:2  ...

siteB -0.623                                                        

siteC -0.623  0.200                                                 

time2          -0.357  0.253  0.253  

time3          -0.357  0.253  0.253  0.200                            

time4          -0.357  0.253  0.253  0.200  0.200                     

siteB:time2     0.253 -0.357 -0.179 -0.623 -0.354 -0.354              

siteC:time2     0.253 -0.179 -0.357 -0.623 -0.354 -0.354  0.200       

siteB:time3     0.253 -0.357 -0.179 -0.354 -0.707 -0.354  0.200  0.100

siteC:time3     0.253 -0.179 -0.357 -0.354 -0.707 -0.354  0.250  0.200 ...

...

Standardized Within-Group Residuals:

Min          Q1         Med          Q3         Max 

-2.31861551 -0.58095354 -0.05834473  0.53737553  2.04025551 

Number of Observations: 180

Number of Groups: 15 

> plot(lm.rm)
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This is not the correlation between 

the variables. It is the expected 

correlation of the model coefficients. 

It indicates that if you did the 

experiment again and the coefficient 

for A got smaller, it is likely that those 

of B and C would  get larger



Are random intercepts enough?

Random intercepts model

• Intercepts are allowed to vary

• biomass is predicted by an intercept that varies across subject (tree)

• assumes that slopes are fixed (the same pattern across time)

• information about intra-subject correlations help determine whether 

there is correlation among measurements on the same subject (tree)

Random slopes model

• Slopes are allowed to vary

• slopes are different across subject (tree)

• assumes that intercepts are fixed

Random intercepts and slopes model

• includes both random intercepts and random slopes

• most complex

• both intercepts and slopes are allowed to vary across subject (tree), 

meaning that they are different across times

40



How to fit a mixed model with random 

slope and intercept
Recall: biomass at k=3 sites on n=15 trees at m=4 times
> lme.rm <-lme(biomass ~ site*time, random =~time|tree, data=data.rm)

> anova(lme.rm)

numDF denDF F-value p-value

(Intercept) 1   126 42.96620  <.0001

site           2    42  3.44695  0.0226

time        3   126 44.31872  <.0001

site:time 6   126  0.63711  0.7642

> summary(lme.rm)

Linear mixed-effects model fit by REML

Data: data.a.rm 

AIC      BIC    logLik

1174.107 1266.222 -560.0537

...

Value Std.Error DF  t-value p-value

(Intercept)    0.733993 0.9333719 126 0.786389  0.4327

siteB 1.017526 1.3199872  42 0.770860  0.4440

siteC 3.925862 1.3199872  42 2.974166  0.0043

time2          2.275080 0.8674875 126 2.622608  0.0095

time3          2.629211 0.6337064 126 4.148941  0.0001

time4          2.667666 0.6950092 126 3.838318  0.0002

41

With only random intercept:
numDF denDF F-val

(Intercept) 1   126 92.46

site    2    42  3.59

time     3   126 35.55

site:time 6   126  0.50

Does the AIC indicate a better model? 
(AIC=1172 in intercept only model)

The estimates 

are the same, but 

the standard 

errors are very 

different!



What correlation pattern do we expect 

among observations on the same subject?
• The models we fit assumed a compound symmetric 

correlation structure (CS) among measurements taken on 

the same subject (trees in the same plots or times on the 

same tree)

• What if we think measurements taken closer together in 

time/space might be more correlated than those taken 

farther apart?
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General form of a variance-covariance 

matrix
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Variance components – type matrix (VC)

In a fixed effect model, we assume: 

•variances among observations from different subjects taken 

at the same time (diagonal elements) are equal 

(homoscedastic!) 

•co-variances between observations taken at different times 

(off-diagonal elements) are zero (independent!)
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Compound Symmetric (CS) Variance-

covariance matrix

•Variances among observations from different subjects taken 

at the same time (diagonal elements) are the equal 

(homoscedastic!)

•Co-variances between observations taken at different times 

(off-diagonal elements) are equal

 Regardless of time between measurements, observations 

from same subject are equally correlated



















S

1

1

1

2



















Autoregressive order 1 (AR(1)) variance-

covariance structure
• Variances among obs from different subjects taken at the 

same time (diag. elements) are the equal 

(homoscedastic!)

• Covariances between obs taken at different times (off-

diag. elements)  are correlated, with constant decay 

Correlations 
decrease as 
time between 
obs. increases

Add to lme call: corr=corAR1()
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R output: mixed model with AR(1) repeated times
> lme.rm.ar1 <-lme(biomass ~ site*time, random =~1|tree, 

correlation = corAR1(), data=data.rm)

> anova(lm.rm.ar1)

numDF denDF F-value p-value

(Intercept)     1   126 95.03080  <.0001

site            2    42  3.57881  0.0194

time            3   126 40.98609  <.0001

site:time 6   126  0.54125  0.8428

> summary(lm.rm.ar1)

Linear mixed-effects model fit by REML

Data: data.rm 

AIC      BIC    logLik

1171.441 1236.2611 -566.719

Random effects:

Formula: ~1 | tree

(Intercept) Residual

StdDev:    3.492924 1.942569

47

AIC are very close to those without 
AR(1): AIC was 1172.1, 

Random effects:

Formula: ~1 | rep

(Intercept) Residual

StdDev:    3.448301 2.019734



R output: mixed model with AR(1) repeated times -

2
Correlation Structure: AR(1)

Formula: ~1 | tree 

Parameter estimate(s):

Phi 

-0.1811848 

Fixed effects: biomass ~ site * time 

Value Std.Error DF  t-value p-value

(Intercept)    0.733993 1.0318303 126 0.711351  0.4779

siteB 1.017526 1.4592283  42 0.697304  0.4885

siteC 3.925862 1.4592283  42 2.690368  0.0094

time2          2.275080 0.7709120 168 2.951154  0.0036

time3          2.629211 0.6975860 168 3.769013  0.0002

time4          2.667666 0.7114323 168 3.749712  0.0002

siteB:time2    0.375345 1.0902341 168 0.344280  0.7311 

...

48

Effect values 

are the 

same.  

Standard 

errors are 

different for 

times only!

We now have an 

estimate of rho!

We could try other kinds of 

correlation matrices and find the 

one with lowest AIC



• When there is a significant interaction, the effect of Factor 

A depends on the level of Factor B, and 

• the effect of Factor B depends on the level of Factor A

• For example:

• We are studying the effects of 3 levels of Site and 4 levels of Time. 

• Neither Site nor Time is significant on its own, but the interaction is 

significant

• if we plot means for each factor separately, we may see…:

What is an Interaction?



• Looking at these graphs, what would you conclude about 

the effects of Site

• and/or Time?

Example: mean values for each factor 

separately

But these graphs do NOT 
tell the whole story… they 
are hiding something… 
THE INTERACTION!



• When we have no significant interaction, the effect of 

factor A does not depend on the level of factor B, and 

vice-versa

Example: no interaction



• Where there is a significant interaction, we cannot make 

statements about A or B without the context of B or A, 

respectively

Example: significant interaction



• Sometimes the significant interaction is not directional; rather, it 

means that the direction is the same for all levels, while the 

magnitude is different by level

Example: significant interaction - 2

To examine the interaction 

graphically:

interaction.plot(factorA, 

factorB, responsevar)

Or 
plot(lsmeans(lmeobject, 

~ factorA:factorB))



HANDS-ON EXERCISE



Question 1-2



Question 5-6



What if our experimental/sampling area is 

not homogenous?

• Blocking

• A block is a group of homogeneous experimental 

units

• Blocks are chosen so as to maximize variation 

among blocks with the aim of minimizing the variation 

within blocks

• Reasons for blocking

• To remove block-to-block variation from the 

experimental error (which should increase precision)

• To allow more uniform treatment comparisons

• To allow the researcher to sample a wider range of 

conditions



Randomized complete block designs (RCB)
• Blocks are chosen so that the experimental material within block 

is homogeneous – and generally we do NOT care to make 

inferences about blocks (it is a ‘nuisance’ variable)

• Treatments are randomly assigned within block (restricted 

randomization)

Irrigation I Irrigation III Irrigation I

Irrigation II Irrigation II Irrigation III

Irrigation I Irrigation III Irrigation II

1 2                                                 3

1 2                                                 3

1 2                                                3

BLOCK 1                           BLOCK 2                                   BLOCK 3



Randomized complete block designs –

ANOVA table

Experimental error is partitioned so that we separate 

out block-to-block variation  lose DOF but 

(hopefully) decrease Exp.Error

 We would analyze as a two-way ANOVA – also a GLM

Source Degrees of 

freedom

Mean 

Squares

F test

Block n-1=2 MSB

Irrigation k-1=2 MSIRR F(2,4)= 

MSIRR/MSE

Experimental Error (k-1)(n-1) = 4 MSE

Total kn-1 = 8



How to fit a mixed model with blocking?

> data.rcb$block <- as.factor(data.rcb$block)

> lme.rcb <-lme(biomass ~ irr, random =~1|block/irr, 

data=data.rcb)

> anova(lme.rcb)

> summary(lme.rcb)

> plot(lme.rcb)

• The function lme estimates a linear mixed effects model 
(Y~X) using data in the dataframe data.rcb

• Block is not a fixed effect

• Irrigation types are nested inside each block in the 
random effect 

• The functions summary, anova, plot are used in the same 
manner as with the other analyses

60



More complex designs

• What if you have more time points than experimental 
units?
• E.g. eddy covariance data

Time series models, wavelet analyses

• What if you have multiple simultaneous experimental 
treatments?
• No restriction on randomization

Factorial experiment (can be used with CRD or RCB)

• Restriction on randomization

Split-plot experiment (can be used with CRD or RCB)

• What if you have additional explanatory variables?
• E.g. soil moisture measured at each site and time

Analysis of covariance
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Conclusions: Why does design matter?

• Experimental designs have HUGE impacts on how we 

collect and analyze the data

• How we set up the experiment controls:

What effects are testable

What error terms are appropriate

The number of ‘true replicates’



Take home messages

• In the design stage, be sure to be very clear about how 

you intend to collect the data!

• Draw a picture

• Make a table

• Consider ‘confounding factors’, such as aquaria or greenhouse 

space or other things that might introduce bias

• Using well-studies designs enables us to easily analyze 

data and construct uncertainty estimates

Now on to hands-on exercises!



Question 5


