IDENTIFICATION OF VIRUS ISOLATES DETECTED IN WATER DRAINING FOREST AND PASTURE, NEW ZEALAND

Sam S. Mukherjee and John D. Castello. Faculty of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210.

Methods

Results

A total of seven isolates were identified as follows:

1. Tobacco Mosaic Virus (TMV-NZ)
2. Tobacco Rattle Virus (TRV-NZ)
3. Potato Yellows Virus (PYV-NZ)
4. Potato Virus X (PVX-NZ)
5. Potato Streak Virus (PSV-NZ)
6. Potato Strain 3 Virus (PSV-3)
7. Potato Strain 4 Virus (PSV-4)

These viruses were characterized for their host specificity and genetic relationship, as well as for the production of symptoms observed in different plants.
Early development of a two-aged northern hardwood stand in the Adirondacks

Heather M. Engelman, Ralph D. Nyland, and Christopher A. Nowak

Faculty of Forest and Natural Resources Management, SUNY College of Environmental Science and Forestry

Introduction

Two-aged silviculture has been proposed as an alternative to clear-cutting in Canada and across North America as a way to reduce the risk of wildfires and the loss of wildlife habitat. However, silviculture can be complex and expensive, and it can be a challenge to manage.

Methods

The study area is located in the Adirondack Park, New York. The study was conducted in a northern hardwood forest, which is a type of forest that is dominated by deciduous trees and has a high diversity of species.

Acknowledgments

The authors would like to thank the following people for their support: Heather M. Engelman, Ralph D. Nyland, and Christopher A. Nowak.
Differences in Accumulation of Fine Particles on Leaves of *Tilia x euchlora* and *Pyrus calleryana*

Venera A. Jouraeva, Alyson Lancik, Chris Johnson, David L. Johnson, John P. Hassett, Susan Anagnost, and David J. Nowak

1Department of Chemistry; 2Construction Management and Wood Products Engineering, SUNY ESF, Syracuse, NY 13210
2USDA Forest Service, Northeastern Research Station, c/o SUNY CESF, 5 Moon Library, Syracuse, NY 13210

ABSTRACT

CAN LEAVES TRAP PARTICLES?
- Leaves are occluded with wax layer which protects them from delamination.
- Researchers used needles, not leaves.
- However, 90% of the forest in the northeastern USA is 200-5000 years old.
- Any noticeable differences in accumulation of PAHs were attributed to morphological differences.
- Tilia x euchlora and Pyrus calleryana have similar leaf morphology.
- Leaves were collected to have properties of cotton, while they are not.

HIGH MOLECULAR WEIGHT PAHs

<table>
<thead>
<tr>
<th>METALS, NONPARAMETRIC WILCOXON TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>METALS</td>
</tr>
<tr>
<td>Ca</td>
</tr>
<tr>
<td>Mg</td>
</tr>
<tr>
<td>Fe</td>
</tr>
<tr>
<td>Mn</td>
</tr>
<tr>
<td>Cu</td>
</tr>
</tbody>
</table>

TEMPERATURE DEPENDENCE OF ACCUMULATION OF PAHs

Different regression patterns for different tree species indicate that presence of acidic plots can important role in PAH partitioning in the vegetation surface.

ROLE OF SCOTTY WILDS IN ACCUMULATION OF FINE PARTICLES

Two Sample T-test (n = 6)