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Abstract.   Estimating streamwater solute loads is a central objective of many water- quality monitoring 
and research studies, as loads are used to compare with atmospheric inputs, to infer biogeochemical pro-
cesses, and to assess whether water quality is improving or degrading. In this study, we evaluate loads and 
associated errors to determine the best load estimation technique among three methods (a period- weighted 
approach, the regression- model method, and the composite method) based on a solute’s concentration dy-
namics and sampling frequency. We evaluated a broad range of varying concentration dynamics with stream 
flow and season using four dissolved solutes (sulfate, silica, nitrate, and dissolved organic carbon) at five 
diverse small watersheds (Sleepers River Research Watershed, VT; Hubbard Brook Experimental Forest, NH; 
Biscuit Brook Watershed, NY; Panola Mountain Research Watershed, GA; and Río Mameyes Watershed, PR) 
with fairly high- frequency sampling during a 10-  to 11- yr period. Data sets with three different sampling 
frequencies were derived from the full data set at each site (weekly plus storm/snowmelt events, weekly, 
and monthly) and errors in loads were assessed for the study period, annually, and monthly. For solutes that 
had a moderate to strong concentration–discharge relation, the composite method performed best, unless 
the autocorrelation of the model residuals was <0.2, in which case the regression- model method was most 
appropriate. For solutes that had a nonexistent or weak concentration–discharge relation (model R2 < about 
0.3), the period- weighted approach was most appropriate. The lowest errors in loads were achieved for sol-
utes with the strongest concentration–discharge relations. Sample and regression model diagnostics could 
be used to approximate overall accuracies and annual precisions. For the period- weighed approach, errors 
were lower when the variance in concentrations was lower, the degree of autocorrelation in the concentra-
tions was higher, and sampling frequency was higher. The period- weighted approach was most sensitive 
to sampling frequency. For the regression- model and composite methods, errors were lower when the vari-
ance in model residuals was lower. For the composite method, errors were lower when the autocorrela-
tion in the  residuals was higher. Guidelines to determine the best load estimation method based on solute 
concentration– discharge dynamics and diagnostics are presented, and should be applicable to other studies.
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IntroductIon

Streamwater load represents the mass of sol-
utes or sediment that passes a given location on a 
stream during a set period. Load estimation is a 
central objective of many water- quality monitor-
ing programs and research studies. In watershed 
studies, loads serve as an integrated measure of 
inputs and biogeochemical processes within a 
watershed that affect water quality (e.g., Likens 
et al. 1967, Semkin et al. 1994). With increased 
emphasis on watershed- based strategies, such 
as best management practices (BMPs) for the 
control of nonpoint- source pollutants, reliable 
measures of loads are needed to assess whether 
water quality is improving or degrading. In the 
United States, stream reaches that do not meet 
water- quality standards are subject to waste- load 
allocation schemes based on the total maximum 
daily loads (TMDL; USEPA 2000). Accurate and 
precise load estimates are essential to relate 
changes and trends in water- quality to chang-
es in inputs of point-  and nonpoint- source pol-
lutants and to evaluate the effects of short- term 
(e.g., drought) and long- term climatic patterns, 
to assess the effectiveness of BMPs on water 
quality, and to quantify the seasonal variability in 
hydrologic and biogeochemical processes within 
a watershed.

The total solute load (L) is the product of solute 
concentration (C) and discharge (Q) integrated 
over time (t): 

(1)

To evaluate the integral in Eq. 1 requires a con-
tinuous record of concentration and discharge. 
While discharge can readily be measured in a 
continuous manner, most solutes require the 
analysis of discrete samples. Various techniques 
have been developed to estimate loads from dis-
crete concentration observations. For studies that 
require inter- annual and seasonal load estimates, 
period- weighted approaches and regression- 
model (or rating- curve) methods are most appro-
priate, as they allow estimation of concentrations 
and loads continuously through time.

In a period- weighted approach, measured 
concentrations are assumed to represent the 
concentration in the period around the sample 

collection, either as a step function of the sam-
ple concentrations (e.g., Likens et al. 1977) or as 
a piecewise linear function between measured 
concentrations (e.g., Larson et al. 1995, Fig. 1b), 
which is then used in equation 1 to estimate 
load. The load estimate is sensitive to sampling 
frequency and design (Richards and Holloway 
1987), particularly if concentrations vary strong-
ly with stream flow. In this situation, baseflow 
concentrations can be misapplied to adjacent, 
higher stormflows while storm concentrations 
can be misapplied to adjacent, lower baseflows. 
These misrepresentations do not equally coun-
teract each other, resulting in load estimates 
that are typically more biased toward baseflow 

L=∫ C(t)Q(t)dt.

Fig. 1. Example of (a) storm hydrograph and 
sampling; and dissolved silica concentration functions 
for: (b) Period Weighted Approach; (c) Regression- 
Model Method, and; (d) Composite Method for a 
storm at Panola Mountain.
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 concentrations, especially as sampling frequency 
is decreased. Various sampling designs, such as 
selection at list time (SALT; Thomas 1985) and 
time- stratified sampling (Thomas and Lewis 
1993) and load estimation methods such as that 
of Worrall et al. (2013) have been developed to 
reduce this type of error.

In a regression- model method, C(t) is estimated 
using a regression model relating concentration to 
continuous variables such as discharge and day 
of year (e.g., Johnson 1979, Crawford 1991, Cohn 
et al. 1992, Fig. 1c), enabling a calculation using 
Eq. 1. The model predicts the average concen-
tration response for the conditions present, and 
therefore does not attempt to match the observed 
concentrations at any given time. Regression- 
model method estimation errors can be reduced 
by increasing the sampling frequency (Horowitz 
2003, Verma et al. 2012) and by including either 
event sampling (Preston et al. 1989, Robertson and 
Roerish 1999, Robertson 2003) or targeted high- 
flow sampling (Horowitz 2003) to ensure that the 
concentration–discharge relationship is adequate-
ly defined (Smith and Croke 2005).

The composite method is a hybrid load esti-
mation approach that incorporates aspects of the 
period- weighted approach and the regression- 
model method (Huntington et al. 1994, Aulen-
bach and Hooper 2006), and is equivalent to the 
Q- proportionate method employed by Vanni 
et al. (2001). In this method, a regression model 
is used to predict concentrations continuously 
through time, but the curve is forced through the 
observations by adjusting the regression model 
concentrations by the residual concentrations 
(sample observed minus regression- model pre-
dicted concentrations) and interpolating this re-
sidual correction between the observed sample 
concentrations (Fig. 1d). This approach gener-
ally improves the precision of regression- model 
method load estimates at shorter reporting pe-
riods when autocorrelation is present in the 
residual concentrations, which is indicative of 
persistent temporal deviations from the predict-
ed concentrations (Aulenbach and Hooper 2006, 
Aulenbach 2013).

Estimating uncertainty in load estimates for 
these three load methods can be complex, but 
is important for selecting the best method for a 
particular data set. For a period- weighted ap-
proach, the variance of a load estimate can be 

derived from a semivariogram calibrated to the 
data using a cross- validation technique (Shih 
et al. 1998). For regression- model methods, the 
uncertainty in the regression is easy to calculate, 
but this can underestimate errors if the model 
 calibration data set is not representative of all 
hydrologic conditions or model residuals are au-
tocorrelated (Aulenbach 2013). The uncertainty 
in the composite method cannot be directly cal-
culated, but has been estimated using a subsam-
pling approach using rich data sets (Aulenbach 
and Hooper 2006, Aulenbach 2013). Appling 
et al. (2015) used a delete- one jackknife approach 
to estimate the uncertainty of loads in all three 
methods, allowing them to choose the method 
with the smallest errors.

The appropriate load estimation method to use 
depends on the sampling frequency and design 
(e.g., fixed- interval, targeted high flow, and event 
sampling), watershed size, the variability in flow, 
and the strength and form of the concentration–
discharge relation (Richards and Holloway 1987, 
Preston et al. 1989, 1992). Moatar and Meybeck 
(2007) indicated that various solutes had different 
and somewhat inherent load precisions. Preston 
et al. (1989) compared results from various load 
estimation methods for various combinations 
of fixed- interval and event sampling designs 
and found that the regression- model approach 
provides accurate and precise load estimates 
when the concentration–discharge relationship 
is strong and consistent. Studies where the con-
centration–discharge relationship is not strong 
(R2s < 0.3) have indicated that the regression- 
model method is not appropriate (Quilbé et al. 
2006) and that a period- weighted approach was 
a better method (Moatar and Meybeck 2005). 
Kerr et al. (2015) indicated that solutes that had 
higher temporal variation in concentrations had 
poorer precisions when using a period- weighted 
approach. Aulenbach (2013) indicated that for 
suspended sediment with a relatively strong 
concentration–discharge relation, when the auto-
correlation of regression- model residual concen-
trations was >0.15, the composite method could 
improve upon regression- model method load 
estimates.

Previous studies have indicated that the best 
load estimation method is dependent on the sol-
utes considered at a particular study site, along 
with the sampling strategy employed. In this 
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study, we estimated loads for four solutes at five 
diverse, small, forested watersheds with a broad 
range of concentration variability (dynamics) 
to provide recommendations as to the most ac-
curate and precise method to apply. The effect 
of sampling frequency was explored through 
the application to three sub- sampled data sets 
(weekly plus event, weekly, and monthly). Loads 
were estimated using three common approach-
es (period- weighted approach, regression- model 
method, and composite method) for each solute- 
watershed combination and for each sampling 
frequency. The accuracy for the study period and 
the precisions at annual and monthly reporting 
periods were determined. In addition to deter-
mining the best approach to load estimation for 
particular characteristic solute dynamics, solute 
and regression model diagnostics were explored 
to quantify the accuracy and precision of the 
three load estimation approaches.

Methods

Chemical solutes
Four dissolved chemical solutes were included 

in this analysis: sulfate (SO 2−
4 ), silica (Si), nitrate 

(NO −

3 ), and dissolved organic carbon (DOC). 
These solutes were selected because they differ 
in their sources, predominant hydrologic flow-
paths, and biogeochemical reactivities at these 
watersheds (Johnson et al. 1969, Lawrence and 
Driscoll 1990, Stoddard and Murdoch 1991, 
Shanley and Peters 1993, Huntington et al. 1994, 
Burns et al. 1998, Shanley et al. 2004, Peters 
et al. 2006, Sebestyen et al. 2009, Stallard and 
Murphy 2012, 2014) resulting in a wide range 
of solute dynamics that are expected to be 
representative of many solutes at other sites. 
The most important differentiating characteris-
tics of these solutes are that SO 2−

4  is atmo-
spherically derived and can be somewhat 
reactive, Si is a weathering product that behaves 
conservatively, and NO −

3  and DOC are biogeo-
chemically controlled and have contrasting 
strengths of concentration–discharge relations.

Watershed descriptions and sampling
This analysis uses data from five small 

 (13–1780 ha), forested watersheds (Fig. 2): 
Sleepers River Research Watershed (watershed 
W- 9), in northeastern Vermont; Hubbard Brook 

Experimental Forest (watershed 6), in the White 
Mountains of New Hampshire; Biscuit Brook 
Watershed, in the Catskill Mountains of New 
York; Panola Mountain Research Watershed, in 
the Piedmont of Georgia; and the Río Mameyes 
Watershed, in the Luquillo Experimental Forest 
in the Luquillo Mountains, Puerto Rico. 
Watersheds were selected that had at least 10 yr 
of stream sampling including high- flow sam-
pling. Additionally, the watersheds represent 
a variety of bedrock types and a wide range 
in climatic and ecological settings that provide 
contrasting water- quality dynamics for the four 
selected solutes (Table 1). The watersheds also 
vary hydrologically, with snowmelt being im-
portant at the three northern watersheds and 
stream flows at Río Mameyes being an order 
of magnitude greater than the other watersheds 
(see Fig. 3 in the Results section).

From each watershed, we used 10 or 11 yr of 
weekly and hydrologic event- based water- quality 
sampling along with continuous (1-  to 15- min in-
terval) stream flow measurements throughout 

Fig. 2. Locations of the five watersheds used in this 
study.
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the period. The amount and type of event- based 
sampling varied greatly among watersheds (Ta-
ble 2). At Sleepers River, event samples were split 
between snowmelt events and storms at other 
times of the year. Event sampling was uneven 
throughout the period, with most of the sampling 
occurring during 5 yr, 2002–2004 and 2008–2009. 
Hubbard Brook had the fewest event- based sam-
ples; these were a mixture of snowmelt event, 
storm, and intermittent supplemental baseflow 
samples. Biscuit Brook event sampling was fairly 

consistent over the period and focused particular-
ly on snowmelt events, but also included several 
storms each year that entailed a sample collect-
ed on the rising hydrograph limb, near to peak 
flow, and on the recession limb of each storm. 
Panola Mountain had the most extensive storm 
sampling, capturing most of the large storms that 
occurred during the period. Samples at Panola 
were not analyzed for DOC for a sufficiently long 
period to include in this analysis. Storms were 
sampled at Río Mameyes  sporadically through-

Table 1. Descriptions of the five watersheds used in this study.

Watershed
Agency; 

program†

Drainage 
area  
(ha) Geology

Climate‡; average 
air temperature; 

average 
precipitation Ecoregion§ Vegetation

Elevation 
range (m)

Sleepers River 
Research 
Watershed 
(Watershed 
W- 9), Danville, 
Vermont¶

USGS; 
WEBB

40.5 Calcareous 
granulite/
quartz- mica 
phyllite; 
overlain by 
glacial till

Humid continental 
(cool summer); 
4.6°C; 1320 mm 
(25–30% snow)

Northeastern 
Highlands: 
Northern 
Piedmont 
[581]

Rich northern 
hardwood 
forest

519–678

Hubbard Brook 
Experimental 
Forest 
(Watershed 6), 
West 
Thornton, New 
Hampshire#

USDA & 
NSF; 
LTER

13.2 Meta- 
morphosed 
sedimentary 
– gneiss and 
veins of 
pegmatite; 
overlain by 
glacial till

Humid continental 
(cool summer); 
6°C; 1230 mm 
(25–33% snow)

Northeastern 
Highlands: 
White 
Mountains/
Blue 
Mountains 
[58p]

Northern 
hardwood 
forest with 
spruce and 
fir at higher 
elevations

549–792

Biscuit Brook 
Watershed, 
Frost Valley, 
Catskill 
Mountains, 
New York††

USGS 959 Sedimentary 
– sandstone; 
overlain by 
glacial till

Humid continental 
(warm summer); 
6°C; 1656 mm 
(20–25% snow)

Northeastern 
Highlands: 
Catskill 
High Peaks 
[58y]

Northern 
hardwood 
forest with 
red spruce 
and balsam 
fir near 
divide

628–1130

Panola Mountain 
Research 
Watershed, 
Stockbridge, 
Georgia‡‡

USGS; 
WEBB

41 Granodiorite 
with 
interspersed 
pods of 
hornblende 
biotite gneiss

Humid sub- 
tropical; 16°C; 
1200 mm (<2% 
snow)

Piedmont: 
Southern 
Outer 
Piedmont 
[45b]

Equal  
amounts of 
deciduous, 
coniferous 
and mixed 
forest; 10% 
outcrop

224–279

Río Mameyes 
Watershed, 
Luquillo 
Mountains, 
Puerto Rico§§

NSF & 
USGS; 
LTER & 
WEBB

1780 Volcanoclastic 
Cretaceous 
rocks and 
quartz 
diorite

Tropical rain forest; 
23°C; 2520 mm 
(no snow)

Puerto Rico 
Province: 
Dry- Humid 
Mountains 
[M411A]

Mature 
montane 
wet 
evergreen 
forest

83–1050

†  USGS, U.S. Geological Survey; USDA, U.S. Department of Agriculture; NSF, National Science Foundation; WEBB, USGS 
Water, Entergy and Biogeochemical Budgets Program; LTER, National Science Foundation Long Term Ecological Research 
Network.

‡ Climate from Koppen–Geiger climate classification (Peel et al. 2007).
§ Ecoregion level III and IV from Bailey 1976, McNab and Avers 1994, Griffith et al. 2001, 2009, and Bryce et al. 2010.
¶ Shanley et al. (2004).
# Likens et al. (1967).
†† Stoddard and Murdoch (1991).
‡‡ Peters et al. (2000).
§§ Murphy and Stallard (2012).
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out the period. Storm samples were analyzed 
fairly frequently for Si, occasionally for SO 2−

4  and 
NO −

3 , and infrequently for DOC. The amount of 
event sampling at the different watersheds was 
considered when drawing conclusions about the 
 resulting load estimates. Sample concentrations, 
along with stream flow and air temperature data 
used for concentration regression modeling and 
load estimation, are documented and included in 
the supporting information.

Load estimation methodology
Loads for each watershed- solute combination 

were estimated using three schemes: (1) a period- 
weighted approach; (2) a regression- model method; 
and (3) the composite method. Each of these load 
estimation methods was applied using three data 
sets: (1) monthly; (2) weekly; and  (3) complete 
(weekly sampling plus event sampling). The 
period- weighted approach was implemented by 
linearly interpolating the  concentrations between 
samples. Both regression- model and composite 
methods require concentration regression models 
to be developed, and these are detailed in the 
appendix of the supporting information. Loads 
for all three methods were then estimated using 
computer code written in 4D database software 
(4D, San Jose, CA; Any use of trade, firm, or 
product names is for descriptive purposes only 
and does not imply endorsement by the U.S. 
Government) and are included in the supporting 
information. The program is an update to code 
written in 1993 by the lead author and used in 
the original implementation of the composite 
method (Huntington et al. 1994, Aulenbach and 
Hooper 2006). The code was updated to handle 
additional concentration regression model vari-
ables utilized in this analysis.

Solute variability and diagnostics
Solute concentration attributes and model 

diagnostics were compiled to classify solute 
dynamics and to assist in assessing load esti-
mate accuracy and precision. These variables 
were selected, in part, because they do not 
require knowledge of the true load estimate, 
nor require any additional analysis beyond fit-
ting a regression model to calculate model 
residual concentrations.

The regression model R2 (adjusted for the 
number of predictors) represents the variance in 

concentration explained by the regression mod-
el. The standard error (SE) of the concentrations 
represents the observed sample concentration 
variance, and the SE of the model residuals rep-
resents the remaining unexplained concentration 
variance after the model fit. Relative SEs were 
calculated by dividing by the mean of the sam-
ple concentrations, and are expressed as a per-
centage of the mean concentration. Relative SEs 
should be related to the obtainable accuracy and 
precision of load estimates, reflecting greater dif-
ficulty in estimating loads of solutes that are more 
variable. Two other useful diagnostics are the au-
tocorrelation (also known as serial correlation) of 
sample concentrations and of model residuals, 
which indicate the degree of similarity between 
adjacent values in time. A period- weighted ap-
proach exploits this similarity in concentrations 
to estimate the concentrations between samples, 
while the composite method uses the structure of 
patterns in the model residual concentrations to 
adjust the model- predicted concentrations to fit 
the observed concentrations.

Load accuracy and precision
The accuracy and precision of load estimates 

could be defined by comparison to the true 
load, if it were known. For this study, we as-
sume that the composite method applied to the 
complete data set is the “best” estimate of loads 
that can be made with the samples collected 
in the analysis. Aulenbach and Hooper (2006) 
showed that the composite method converged 
on an apparent “true” load with increased sam-
pling based on a bootstrapping experiment of 
a rich data set from Panola Mountain for al-
kalinity and chloride. We used a similar approach 
herein by comparing the composite method loads 
using the complete data sets vs. using the com-
plete data set while excluding every other event 
sample. If load estimates from these two sam-
pling frequencies are similar, this should provide 
some reassurance that event sampling was suf-
ficient and that convergence on the true load 
has been nearly reached.

Load estimate accuracy (systematic error or 
bias) and precision (random error) were calculat-
ed for all watersheds and solutes for each com-
bination of the three load estimation methods 
and three sampling strategies. There are no error 
estimates for the composite method applied to 
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the complete data set, as these were designated 
as the “best” estimate of load to use for compar-
isons. Accuracies for the period of record were 
calculated as a percent error, the difference be-
tween a load estimate and the best estimate of 
load, divided by the best estimate of load and 
multiplied by 100%. The annual and monthly 
precisions were calculated similarly by calcu-
lating the percent errors at annual and monthly 
time steps and then determining the SE (vari-
ance) of all the percent errors. Note that the error 
assessment in this analysis is for load estimation 
methodology, sampling approach, and solute dy-
namics, and does not consider measurement er-
rors in the data such as in streamflow and sample 
concentrations (e.g., Yanai et al. 2015). To further 
simplify the discussion of load errors, we qual-
ified the statistical errors as “good”, “fair”, and 

“poor” (Table 3). These categorizations are sub-
jective, based on reasonable expectations of accu-
racies and precisions in load estimates observed 
in various studies and are not meant to be a de-
finitive measure of quality. Higher levels of error 
were expected and accepted in the categorization 
of NO −

3  loads because NO −

3  had much higher rel-
ative SEs in concentrations compared to the other 
solutes (see Tables 4 and 5 in Results).

results

Streamwater concentration–flow relations
Dissolved SO 2−

4  concentrations exhibited di-
lution (decreasing concentrations with increas-
ing stream flow) at four of the five watersheds; 
concentrations increased with increasing stream 
flow at Panola Mountain (Fig. 3). The relations 

Fig. 3. Concentration vs. specific discharge (stream flow per unit area) relations for the five watersheds and 
four solutes. Note that the flow at Rio Mameyes is an order of magnitude greater than the other watersheds. 
[SO 2−

4 , dissolved sulfate; Si, dissolved silica; NO −

3 , dissolved nitrate; DOC, dissolved organic carbon].
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were fairly strong with some exceptions. 
Sleepers River exhibited high SO 2−

4  concentra-
tions during the 9- month period after a long 
drought and the Río Mameyes exhibited more 
variable SO 2−

4  concentrations at lower flows. 
At Panola Mountain, the SO 2−

4  relationship was 
much more variable than at the other water-
sheds, mainly due to the release of SO 2−

4  from 
soils when the watershed was wetting up.

Dissolved Si had a strong, tight dilution rela-
tionship at all five watersheds. This relationship 
was presumably due to the contribution of more 
dilute water from shallow flowpaths during 
 hydrologic events.

Dissolved NO −

3  concentrations exhibited a 
weak positive relationship with stream flow at 
all watersheds except Panola Mountain. Sleepers 
River and Biscuit Brook plots exhibited a wedge- 
shaped pattern where NO −

3  concentrations were 
more variable at higher stream flows. Low NO −

3  
concentrations were observed at Hubbard Brook 
and Panola Mountain across their entire range of 
discharges. Río Mameyes had a stronger positive 
relation of NO −

3  concentrations with stream flow 
than the other watersheds.

Dissolved organic carbon concentrations in-
creased with increasing stream flow at all the wa-
tersheds where it was measured (DOC data were 
not available for Panola Mountain). This increase 
was likely due to flushing of DOC stored in shal-
low landscape positions during events. These re-
lations had a high degree of scatter  except at Hub-
bard Brook. Sleepers River and Biscuit Brook DOC 
concentrations exhibited a “rising wedge” pattern 
with greater variability at higher discharges.

Model diagnostics and solute yields
The concentration regression model R2 values, 

concentration and residual diagnostics, and 
study period yields (loads per unit area) for 
the 60 model data sets developed in this anal-
ysis are reported in Table 4, and are summa-
rized by solute in Table 5. Additional details 
on the models are contained in the appendix. 
Average model R2 values ranged from a low 
of 0.38 for NO −

3  to a high of 0.83 for Si, with 
SO 2−

4  and DOC having intermediate values of 
0.66 and 0.65, respectively. The magnitude of 
model R2 reflects both the strength of the con-
centration–discharge relations observed in Fig. 3 

Table 3. Categorization of load estimation bias and precision by solute.

Statistic Solutes
Categorization of errors

Good Fair Poor

Bias SO 2−
4 , Si, DOC ±3% −6% to −3% & 3% to 6% >±6%

Bias NO −

3 ±5% −10% to −5% & 5% to 10% >±10%
Annual Precision SO 2−

4 , Si, DOC <5% 5 to 10% >10%

Annual Precision NO −

3 <10% 10 to 20% >20%
Monthly Precision SO 2−

4 , Si, DOC <10% 10 to 20% >20%

Monthly Precision NO −

3 <20% 20 to 40% >40%

Note: SO 2−
4 , dissolved sulfate; Si, dissolved silica; DOC, dissolved organic carbon; NO −

3 , dissolved nitrate.

Table 2. Sampling periods and number of event samples at each of the watersheds.

Watershed Time period
Number 
of years

Number of event samples
Dissolved 

sulfate
Dissolved 

silica
Dissolved 

nitrate
Dissolved  

organic carbon

Sleepers River, VT CY1999–2009 11 563 566 566 555
Hubbard Brook, NH CY1998–2008 11 164 164 165 142
Biscuit Brook, NY WY1999–2008 10 442 440 431 462
Panola Mountain, GA WY2000–2009 10 1559 1547 1595 na
Río Mameyes, PR WY1992–2002; Silica 

WY1993–2003; DOC 
WY1998–2008

11 192 1085 192 23

Note: CY, calendar year; WY, water year (defined as October 1st of previous year to September 30th); na, not applicable.
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Table 4. Regression model R2 values, yield estimates, and statistics for solute concentrations (Conc.) and model 
residual concentrations.

Solute Watershed
Sampling 
frequency

Model R2 
(adjusted)

Relative standard error, 
in percent Auto correlation Period yield (μM/m2/year)

Conc. Resi duals Conc. Resi duals
Compo site 

method

Regression- 
model 

method

Period- 
weighted 
approach

SO 2−
4

Sleepers River Complete 0.661 32.4 18.8 0.919 0.824 148 150 150

SO 2−
4

Sleepers River Weekly 0.829 32.8 13.5 0.913 0.577 149 147 154

SO 2−
4

Sleepers River Monthly 0.849 33.4 12.6 0.841 0.338 150 151 159

SO 2−
4

Hubbard Brook Complete 0.837 11.3 4.5 0.728 0.527 52.7 53.0 53.7

SO 2−
4

Hubbard Brook Weekly 0.851 10.7 4.1 0.767 0.576 53.3 53.5 55.1

SO 2−
4

Hubbard Brook Monthly 0.853 10.4 3.9 0.476 0.222 53.2 53.3 57.1

SO 2−
4

Biscuit Brook Complete 0.739 14.5 7.4 0.764 0.486 121 121 120

SO 2−
4

Biscuit Brook Weekly 0.777 10.8 5.1 0.642 0.280 122 122 124

SO 2−
4

Biscuit Brook Monthly 0.797 11.1 4.9 0.582 0.152 123 123 127

SO 2−
4

Panola Mountain Complete 0.642/0.575† 48.7 30.3 0.833 0.773 18.5 18.8 18.5

SO 2−
4

Panola Mountain Weekly 0.667/0.551† 57.5 33.3 0.735 0.787 19.1 18.8 16.9

SO 2−
4

Panola Mountain Monthly 0.677/0.624† 60.3 31.2 0.608 0.650 20.5 20.0 17.0

SO 2−
4

Río Mameyes Complete 0.462 28.9 21.1 0.535 0.205 245 240 264

SO 2−
4

Río Mameyes Weekly 0.086 23.3 22.1 0.221 0.198 253 250 270

SO 2−
4

Río Mameyes Monthly 0.147 22.2 20.0 0.223 0.126 246 242 267

Si Sleepers River Complete 0.826 19.8 8.2 0.890 0.689 201 191 204

Si Sleepers River Weekly 0.778 16.4 7.7 0.858 0.645 204 203 208

Si Sleepers River Monthly 0.790 15.9 7.2 0.669 0.470 204 204 211

Si Hubbard Brook Complete 0.867 19.0 6.9 0.700 0.506 162 165 168

Si Hubbard Brook Weekly 0.863 17.5 6.5 0.689 0.503 163 165 175

Si Hubbard Brook Monthly 0.871 17.4 6.1 0.312 0.291 165 166 188

Si Biscuit Brook Complete 0.707 18.7 10.0 0.750 0.485 84.9 85.2 83.7

Si Biscuit Brook Weekly 0.747 15.5 7.7 0.688 0.550 84.6 85.2 87.4

Si Biscuit Brook Monthly 0.811 16.3 7.0 0.460 0.219 85.2 85.3 90.6

Si Panola Mountain Complete 0.883 43.2 14.7 0.846 0.528 212 211 214

Si Panola Mountain Weekly 0.868 24.7 8.9 0.781 0.598 217 216 235

Si Panola Mountain Monthly 0.863 26.4 9.5 0.641 0.375 210 211 236

Si Río Mameyes Complete 0.888 64.5 21.5 0.786 0.426 1920 1910 2010

Si Río Mameyes Weekly 0.529 23.7 16.2 0.199 0.324 2040 2060 2330

Si Río Mameyes Monthly 0.544 21.6 14.5 0.122 0.129 2250 2230 2560

NO −

3
Sleepers River Complete 0.537 72.9 49.3 0.913 0.800 27.7 29.3 27.7

NO −

3
Sleepers River Weekly 0.513 65.8 45.7 0.830 0.662 27.0 26.0 27.0

NO −

3
Sleepers River Monthly 0.561 64.7 42.0 0.587 0.362 26.0 25.0 25.9

NO −

3
Hubbard Brook Complete 0.408 179 137 0.886 0.846 16.1 17.6 14.8

NO −

3
Hubbard Brook Weekly 0.350 205 164 0.875 0.837 16.2 16.4 12.9

NO −

3
Hubbard Brook Monthly 0.337 198 159 0.728 0.675 18.6 19.2 10.5

NO −

3
Biscuit Brook Complete 0.484 69.2 49.5 0.833 0.732 69.7 69.1 69.7

NO −

3
Biscuit Brook Weekly 0.535 68.8 46.5 0.733 0.525 72.4 72.0 66.5

NO −

3
Biscuit Brook Monthly 0.474 63.1 45.0 0.682 0.544 63.3 65.0 60.4

NO −

3
Panola Mountain Complete 0.170 163 148 0.678 0.625 2.41 3.31 2.44

NO −

3
Panola Mountain Weekly 0.223 113 99.6 0.837 0.780 1.60 1.65 2.01

NO −

3
Panola Mountain Monthly 0.248 110 94.0 0.555 0.411 1.26 1.39 1.90

NO −

3
Río Mameyes Complete 0.301 102 84.1 0.775 0.701 66.8 62.7 56.5
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and the additional variance explained by the 
seasonal and long- term trend model parameters. 
The average variance by solute, as expressed 
by the relative SE of concentrations, was lowest 
for SO 2−

4  (27%) and Si (33%), and highest for 
NO −

3  (117%). The relative SE of the residuals 
was lowest for Si (12%) and highest for NO −

3  
(94%). The percentage reduction in variance of 
the relative SE between the concentrations and 
residuals was highest for Si (63%) and lowest 
for NO −

3  (20%), and was related to the amount 
of variance explained by their models.

Autocorrelations in the concentrations were 
fairly high and similar for SO 2−

4 , Si and NO −

3 ,  

ranging from 0.76 to 0.82, and were lower for 
DOC (0.48;  Table 5). There was still quite a bit 
of  autocorrelation remaining in the residuals, 
 ranging from 0.39 (DOC) to 0.74 (NO −

3 ). The 
amount of autocorrelation removed between the 
concentrations and residuals was positively re-
lated to the amount of variance explained by the 
models.

Composite method complete data set yields 
spanned 0.47 (DOC) to 1.46 (NO −

3 ) orders of 
magnitude (Table 5). The large ranges are indica-
tive of the diversity amongst the five watersheds 
for each solute. Yields were highest at Río Ma-
meyes for all solutes except NO −

3  (Table 4), due 

Table 5. Summary of model R2 values, solute concentration and model residual statistics, and composite 
 method period yields by solute for the complete sampling cases.

Solute

Average 
model R2 
(adjusted)

Average relative  
standard error (%)

Average  
autocorrelation

Composite method period  
yield (μM/m2/year)

Concen trations Residuals

Reduction 
between 

concentrations 
and residuals (%) Concen trations Residuals Minimum Maximum

Order of 
magnitude 
difference

SO 2−
4

0.66 27 16 40 0.76 0.56 18.5 245 1.12

Si 0.83 33 12 63 0.79 0.53 84.9 1920 1.35
NO −

3 0.38 117 94 20 0.82 0.74 2.41 69.7 1.46
DOC 0.65 55 33 41 0.48 0.39 383 1130 0.47

Notes: The relative standard error of residuals is calculated with respect to the average concentration.
SO 2−

4 , dissolved sulfate; Si, dissolved silica; DOC, dissolved organic carbon; NO −

3 , dissolved nitrate.

Solute Watershed
Sampling 
frequency

Model R2 
(adjusted)

Relative standard error, 
in percent Auto correlation Period yield (μM/m2/year)

Conc. Resi duals Conc. Resi duals
Compo site 

method

Regression- 
model 

method

Period- 
weighted 
approach

NO −

3
Río Mameyes Weekly 0.284 90.9 80.5 0.631 0.558 60.1 61.3 49.7

NO −

3
Río Mameyes Monthly 0.165 97.8 88.0 0.440 0.351 63.0 66.1 49.7

DOC Sleepers River Complete 0.631 79.4 48.1 0.796 0.678 383 510 352

DOC Sleepers River Weekly 0.239 59.4 51.6 0.273 0.205 339 352 314

DOC Sleepers River Monthly 0.254 48.5 39.8 −0.011 −0.132 317 320 276

DOC Hubbard Brook Complete 0.781 34.3 16.0 0.442 0.295 580 570 533

DOC Hubbard Brook Weekly 0.729 21.8 11.3 0.423 0.407 574 572 484

DOC Hubbard Brook Monthly 0.735 23.5 11.7 0.187 0.130 570 594 435

DOC Biscuit Brook Complete 0.706 52.5 28.4 0.585 0.465 540 579 576

DOC Biscuit Brook Weekly 0.670 41.7 23.9 0.238 0.284 496 519 453

DOC Biscuit Brook Monthly 0.764 35.9 17.3 0.005 0.028 482 490 407

DOC Río Mameyes Complete 0.491 53.2 37.7 0.110 0.107 1130 1180 897

DOC Río Mameyes Weekly 0.494 53.8 38.0 0.100 0.098 1140 1190 894

DOC Río Mameyes Monthly 0.575 55.1 34.9 0.023 0.082 1240 1260 846

Notes: The relative standard error of residuals is calculated with respect to the average concentration. SO 2−
4 , dissolved sul-

fate; Si, dissolved silica; NO −

3 , dissolved nitrate; DOC, dissolved organic carbon.
† First value for day of year <200, second value for day of year >200.

Table 4. Continued.
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largely to the order of magnitude higher specific 
discharge (stream flow per unit area) observed at 
this  watershed (Fig. 3).

Categorization of solute responses and load errors
The various solute- watershed combinations 

can be categorized into three groups, based on 
aspects of their concentration–discharge rela-
tionships (Fig. 3): (1) solutes with strong, tight 
concentration–discharge relations where the 
solute was conservatively transported (Si) or 
was relatively unreactive, such as SO 2−

4  (except 
at Panola Mountain) and DOC at Hubbard 
Brook; (2) solutes where the concentration–dis-
charge relation was more moderate and variable, 
such as DOC (except at Hubbard Brook) and 
SO 2−

4  at Panola Mountain, and; (3) NO −

3 , which 
exhibits a weak to nonexistent concentration–
discharge relation at all sites. These categori-
zations were helpful in describing the load 

errors due to similarities in the results within 
these categories.

Load errors for solutes with strong concentration–
discharge relations

For solutes with strong, tight concentration–
discharge relations (Figs. 4 and 5), regression-  
model and composite methods load accuracies 
and precisions were mostly categorized as good 
for all three sampling cases. All three sampling 
cases were characterized by low levels of unex-
plained variability, with the relative SE of residuals 
≤21.5% (Table 4). Composite method annual and 
monthly precisions categorized as fair and poor 
typically had autocorrelation in residuals of <~0.15, 
which is an indication that the sampling frequen-
cies were too low for the sample concentrations 
to be representative between samples.

Period- weighted approach accuracies were 
typically good for the complete data set, but 

Fig. 4. Load estimation model bias and annual and monthly precision for solutes with strong concentration–
discharge relations. [SO 2−

4 , dissolved sulfate; DOC, dissolved organic carbon].
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were more biased as sampling frequency de-
creased. Positive biases were observed for the 
period- weighted approach weekly and monthly 
data sets for solutes that exhibited dilution and 
negative biases were observed for solutes that 
showed increasing concentrations with increas-
ing stream flow. These patterns of bias result 
when baseflow concentrations are inappropri-
ately applied to intervening storm periods that 
contribute a large portion of flow and total load. 
The converse—storm sample concentrations 
inappropriately applied to adjacent baseflow 
periods—may also occur, but it typically does 
not offset the former effect because it is associ-
ated with lower stream flows. Period- weighted 
 approach precisions were good, except when the 
relative SEs of the concentrations were >~20% 
and the autocorrelation of the concentrations 
was <~0.3–0.4 (Table 4).

Load errors for solutes with moderate 
concentration–discharge relations

For solutes with moderate and more variable 
concentration–discharge relations (Fig. 6), 
regression- model and composite methods load 
accuracies ranged from good to poor, composite 
method precisions typically ranged from good 
to fair, and regression- model method precisions 
typically ranged from fair to poor. Errors were 
generally greater with less frequent sampling 
except for regression- model method precisions, 
which were relatively unaffected by sampling 
frequency. The greater regression- model method 
biases observed with decreased sampling frequen-
cies is an indication that the sampling was less 
than adequate to properly define the concentra-
tion–discharge relationship (Smith and Croke 
2005). Period- weighted approach accuracies were 
typically poor and were more negatively biased 

Fig. 5. Load estimation model bias and annual and monthly precision for solutes with strong concentration–
discharge relations. [Si, dissolved silica].
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with less frequent sampling, as these solutes at 
these sites exhibited increasing concentrations with 
increasing stream flow. While average model R2 
values were similar for DOC and SO 2−

4  (Table 5), 
SO 2−

4  precisions were better than DOC precisions. 
Some of these differences are likely related to 
higher average relative SEs of concentrations and 
residuals and lower average autocorrelations of 
concentrations and residuals for DOC compared 
to SO 2−

4 . Period- weighted approach precisions 
typically ranged from fair to poor, and were often 
better than regression- model method precisions, 
especially for the complete and weekly data sets.

Load errors for solutes with weak concentration–
discharge relations

For NO −

3 , which exhibited at best a weak 
concentration–discharge relation at all the wa-
tersheds, errors were much larger than for the 
other solutes (Fig. 7), as corroborated by the 
high relative SEs in concentrations and residuals 
(Table 4). Period- weighted approach accuracies 
and annual precisions ranged from good to 
poor, and were better at Sleepers River and 
Biscuit Brook where the relative SE of the con-
centrations were lower (<100%), and for cases 
when the autocorrelation of the concentrations 

Fig. 6. Load estimation model bias and annual and monthly precision for solutes with moderate concentration–
discharge relations. [DOC, dissolved organic carbon; SO 2−

4 , dissolved sulfate].
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were higher and accompanied by more frequent 
sampling. While composite method accuracies 
and precisions were similar to period- weighted 
approach loads for the complete data set at 
watersheds that had good event sampling 
(Sleepers River, Biscuit Brook, and Panola 
Mountain), the composite method was some-
times worse than the period- weighted approach 
at the reduced sampling frequencies. Regression- 
model method accuracies ranged from good to 
poor and were typically fair or poor, and were 
fairly similar to composite method accuracies 
at weekly and monthly sampling frequencies. 
Regression- model method precisions were par-
ticularly poor, indicating that the models had 
little ability to predict short- term variations in 
concentration. Percentage errors in monthly 
precisions were quite large in some cases (errors 
>200% not shown in figures). One reason for 
these large errors is that small differences in 

monthly loads with very low observed NO −

3  
concentrations often resulted in large errors 
when reported on a percentage basis.

Assessment of true loads
For solutes that have moderate to strong 

concentration–discharge relations (SO 2−
4 , Si, and 

DOC), the differences in composite method 
accuracies and precisions between the complete 
sampling case and a sampling frequency where 
every other event sample was included were 
generally small, ≤±1.5% for accuracy and <3.0% 
for annual and monthly precisions in most cases 
(Table 6). There were three exceptions with 
higher monthly precision differences ranging 
between 4.0 and 6.1%. The smaller differences 
indicate that the amount of event sampling was 
sufficient for the composite method estimates 
to be close to the true loads. Río Mameyes 
had very few event DOC samples, so while 

Fig. 7. Load estimation model bias and annual and monthly precision for solutes with weak to nonexistent 
concentration–discharge relations. Monthly precisions >200% are not shown. [NO −

3 , dissolved nitrate].
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the differences in loads were small for this case, 
there was little difference between sampling 
data sets, which makes this comparison for 
determining convergence inconclusive. Load 
errors determined for this case are likely less 
reliable.

For NO −

3 , with its poor concentration–discharge 
relation, the differences in composite method ac-
curacies were small, ≤±1.5%, indicating that the 
composite method complete sampling case likely 
approached the period true load. Annual preci-
sion differences were low at Sleepers River (1.1%) 
and Biscuit Brook (1.2%), but were higher at the 
other three watersheds (3.9–8.0%), indicating ap-
proximations of the true loads at only two of the 
five watersheds on an annual basis. Monthly pre-
cision differences were high at all but Sleepers Riv-
er, and likely indicate that the composite method 
complete data sets used herein were not sufficient 
to represent the true loads on a monthly time- step.

dIscussIon

Solute dynamics and load estimation approach
The best overall load accuracies and precisions 

were achieved for solutes with a strong con-
centration–discharge relation. For solutes with 
a moderate to strong concentration–discharge 
relation, composite method accuracies and pre-
cisions for weekly and monthly data sets were 
almost always as good or better than the other 
two load estimation approaches, regardless of 

sampling frequency. Fair and poor annual and 
monthly precisions with the composite method 
were related to weak temporal patterns in the 
residual concentrations (autocorrelation in re-
siduals <~0.15). In these cases the residuals were 
not particularly useful in improving the load 
estimates at annual and monthly time scales; 
similar to findings for suspended sediment with 
a fairly strong concentration–discharge relation 
(Aulenbach 2013).

For the regression- model method, accuracies 
and precisions were often good for strong con-
centration–discharge relations, as reported by 
Preston et al. (1989), but only where the rela-
tive SEs of residuals were ≤21.5% (Table 4). For 
moderate relations where the SEs of residuals 
were higher, loads calculated by regression were 
typically more biased, while precision was typ-
ically fair or poor and relatively unaffected by 
sampling frequency. Regression models predict 
the mean concentration response, and short- 
term  variability is not sufficiently captured in 
the models to predict loads well at annual and 
monthly time scales (Aulenbach 2013).

The period- weighted approach loads were 
susceptible to bias and imprecision when there 
was a moderate to strong concentration–dis-
charge relation. Good accuracies were sometimes 
achieved for the all- sampling frequency cases. 
Good precisions could be achieved except when 
concentrations were variable (relative SEs of the 
concentrations were >~20%) and when there 

Table 6. Percentage difference between composite method loads all sampling case and sampling case with 
every other event sample.

Solute Statistic
Sleepers  

River, VT
Hubbard  

Brook, NH
Biscuit  

Brook, NY
Panola  

Mountain, GA
Río Mameyes,  

PR

SO 2−
4

Accuracy 0.1 0.1 0.3 −0.5 0.5

SO 2−
4

Annual Precision 0.8 0.3 0.5 1.1 1.6

SO 2−
4

Monthly Precision 1.1 0.9 1.2 5.8 2.6
Si Accuracy 0.0 0.1 0.1 0.2 −0.4
Si Annual Precision 0.1 0.5 0.5 1.0 1.0
Si Monthly Precision 0.3 1.1 1.6 4.0 2.5
DOC Accuracy 0.4 −0.1 −1.5 na −0.1
DOC Annual Precision 0.8 1.9 2.8 na 0.3
DOC Monthly Precision 1.6 2.7 6.1 na 2.4
NO −

3 Accuracy 0.0 0.3 0.0 −0.6 1.9
NO −

3 Annual Precision 1.1 3.9 1.2 8.0 4.8
NO −

3 Monthly Precision 2.2 367.2 6.5 24.9 10.7

Note: SO 2−
4 , dissolved sulfate; Si, dissolved silica; DOC, dissolved organic carbon; NO −

3 , dissolved nitrate; na, not 
applicable.
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were not strong temporal patterns in concentra-
tions (autocorrelation of the concentrations was 
<~0.3–0.4); and are consistent with the findings of 
Kerr et al. (2015).

For solutes with a poor concentration–discharge 
relation (R2 < about 0.3), the period- weighted 
 approach may be the best. The regression- model 
method often exhibited the worst accuracies and 
precisions of the three load methods. This result is 
consistent with the findings of Moatar and Mey-
beck (2005) and Quilbé et al. (2006) who indicated 
that other methods should be used when regres-
sion models are not effective. In this situation, the 
observed concentrations in the period- weighted 
approach are preferable to attempting to correct 
flawed predicted concentrations using the com-
posite method. This approach is supported in that 
the precision of the composite method for weekly 
and monthly sampling frequencies is better than 
that of the regression- model method, but not al-
ways as good as that of the period- weighted ap-
proach (Fig. 7). The period- weighted approach 
has better accuracy and precision when sampling 
frequency is high and when concentrations are 
less variable (lower residual SEs) and have stron-
ger temporal patterns (higher autocorrelations).

Diagnostics for estimating errors
Errors were assessed by plotting their mag-

nitude as a function of various pairs of diag-
nostics. Diagnostics explored included the 
relative SEs of the concentrations and residuals, 
the autocorrelations of concentrations and re-
siduals, and the model R2 values (Table 4). 
Errors were assessed only for bias and annual 
precision, as monthly precisions were not always 
considered legitimate (Table 6). Biases and an-
nual precisions were recalculated for NO −

3  using 
the complete data set period- weighted approach, 
as these loads were considered more likely to 
represent the “true” loads, as previously dis-
cussed. Load error estimates for DOC at Río 
Mameyes were excluded from this analysis, as 
there were too few event samples to evaluate 
convergence on the true loads.

For the period- weighted approach, errors were 
smaller when autocorrelations and sampling fre-
quencies were high, and when relative SEs were 
low, as indicated by the size of the error bubbles 
(Fig. 8). Solutes with strong concentration–dis-
charge relations generally had the best accuracy 

and precision, as they typically exhibited low rel-
ative SEs in their concentrations, and were low-
er when autocorrelation was higher. Dissolved 
NO −

3 , with weak concentration–discharge rela-
tions, typically had the largest errors, which were 
 associated with high relative standard errors in 
NO −

3  concentrations, despite having relatively 
high autocorrelations. The overall effect of auto-
correlation makes sense, as the ability for period 
weighting to estimate load is based on the prem-
ise that the concentrations between samples are 
similar to those of the adjacent samples, and au-
tocorrelation is a measure of similarity between 
samples. Therefore, the sampling frequency is ac-

Fig. 8. Bubble plots of period- weighted approach 
load biases (magnitude) and annual precisions for the 
various combinations of solutes, watersheds, and 
sampling frequencies on plots of autocorrelation of 
concentrations vs. relative standard errors of concen-
trations. Bubble size indicates magnitude of error, bubble 
color indicates strength of solute concentration–discharge 
relation, and bubble border line- style indicates sampling 
frequency.



June 2016 v Volume 7(6) v Article e0129817 v www.esajournals.org

SPECIAL FEATURE: UNCERTAINTY ANALYSIS AULENBACH ET AL. 

counted for to some extent in the autocorrelation 
diagnostic. Smaller errors were associated with 
higher autocorrelations in concentrations and re-
flected higher sampling frequencies, as indicat-
ed by the line styles of the error bubbles. Loads 
were also more difficult to estimate accurately for 
solutes that are more variable (e.g., have higher 
relative SEs such as NO −

3 ).
For the two load estimation approaches that 

employ regression models, the two diagnostics 
that most influenced bias and precision were 

the autocorrelation in the residual concentra-
tions and the relative SE of the residuals. Bias 
patterns for the regression- model and composite 
methods were similar, and were typically lowest 
for solutes with strong concentration–discharge 
relations and highest for solutes with weak con-
centration–discharge relations (Fig. 9). These bi-
ases were lower than the biases observed for the 
period- weighted approach (Fig. 8), except for sol-
utes that had weak concentration–discharge rela-
tions (NO −

3 ), which exhibited somewhat higher 

Fig. 9. Bubble plots of regression- model method and composite method load biases (magnitude) and annual 
precisions for the various combinations of solutes, watersheds, and sampling frequencies on plots of 
autocorrelation of residuals vs. relative standard errors of residuals. The relative standard error of residuals is 
calculated with respect to the average concentration. Bubble size indicates magnitude of error, bubble color 
indicates strength of solute concentration–discharge relation, and bubble border line- style indicates sampling 
frequency.
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biases. Biases were larger when the relative SE of 
the residuals was higher. The relative SE of the 
residuals represents the remaining variance not 
explained by the model, and the probability of 
observing larger biases increases when variance 
is greater. Biases were relatively uninfluenced 
by the amount of autocorrelation in the residu-
als, because deviations from the model tended to 
cancel out over the period of record.

For precision, regression- model method errors 
were unaffected by the autocorrelation of the re-
siduals, but had poorer precisions than the com-
posite method. The composite method did better 
when residual autocorrelations were higher, as 
the stronger patterns in the residuals were used 
to adjust concentrations based on the observa-
tions, thereby improving the load estimates in the 
short- term. But when autocorrelations were low 
(<0.2), precisions were similar for the regression- 
model and composite methods, as there was little 
structure in the residuals by which the composite 
method could improve the load estimates. Bet-
ter composite method precisions for individual 
solute- watershed combinations were associated 
with higher autocorrelations in their residuals 
that reflected their higher sampling frequencies.

While the strength of the concentration–dis-
charge relation of each solute was related to 
its relative SE, resulting in solutes with similar 
concentration dynamics clustering in particular 
regions of the diagnostic plots, the magnitude 
of errors, indicated by the area of the bubbles, 
show greater dependence on the diagnostics. 
Therefore, it should be possible to use these di-
agnostics and the plots in Figs. 8 and 9 to approx-
imate the error for solutes at other watersheds. 
The approximated errors could also be utilized 
in sampling design of future studies if expecta-
tions of the solute diagnostics can be reasonably 
approximated. Furthermore, these results can 
help determine the appropriate load estimation 
method—the method with the lowest errors. 
Combining the results from solutes with both 
strong and moderate concentration–discharge 
relations shows that the composite method was 
the best method when autocorrelations in resid-
uals was >0.2, and the regression- model method 
was preferable when autocorrelations in residu-
als was <0.2. In contrast, for solutes with weak 
concentration–discharge relations, the period- 
weighted approach had the lowest errors. One 

shortcoming of these diagnostic plots is that no 
solutes in this study had high variances and low 
autocorrelations. It is not known how common 
this combination of conditions might be.

Caveats regarding diagnostics
The diagnostics are a useful guide for ap-

proximating uncertainties, but they can some-
times be misleading. While the relative SE of 
concentrations can be used to estimate the error 
of the period- weighted approach, this metric is 
also influenced by the sampling scheme. For 
instance, if concentration variance was greater 
at higher stream flows, having fewer event 
samples would decrease the relative SE of con-
centrations and suggest a lower level of error. 
In reality, the underlying relative SE of con-
centrations that relates to the errors in the 
period- weighted approach is better characterized 
with a sufficient number of event samples to 
represent the concentration variations that exist. 
While the effect of sampling frequency on the 
relative SE of concentrations was observed 
(Table 4), the effects were generally not large.

Similarly, autocorrelations of concentrations 
used to assess the errors in the period- weighted 
approach can also be influenced by the sampling 
scheme. One might expect autocorrelations to 
be higher without event sampling because there 
would be more consistency in concentrations be-
tween adjacent baseflow samples than between a 
baseflow and an event sample, or between adja-
cent event samples at different stream flows. But 
the inclusion of event sampling should improve 
the period- weighted approach load estimates 
even though the autocorrelation diagnostic might 
suggest the opposite. In the current analysis this 
issue was not apparent, as autocorrelations were 
typically greater for the complete data set than 
the weekly data set (Table 4).

Load estimation method selection
Guidelines for selecting the appropriate load 

estimation method can be made based on the 
relations observed between the load errors and 
the various solute dynamics, sampling frequen-
cies, and diagnostics in this analysis (Fig. 10). 
The model R2 cutoff of 0.3 determined in this 
analysis is an approximation. Hence, when 
model R2 values are near this cutoff, values 
of various diagnostics and Figs. 8 and 9 should 



June 2016 v Volume 7(6) v Article e0129819 v www.esajournals.org

SPECIAL FEATURE: UNCERTAINTY ANALYSIS AULENBACH ET AL. 

be relied upon to estimate errors and determine 
the method based on the lowest errors. While 
not assessed in this analysis, we expect that 
the period- weighted approach is not useful for 
solutes with weak concentration–discharge re-
lations and low autocorrelations in concentra-
tions, similar to what was found for the 
composite method and low autocorrelations in 
residuals. A 0.2 autocorrelation cutoff similar 
to that of the composite method is likely, and 
below this cutoff, an averaging method is more 
likely appropriate for estimating loads (e.g., a 
flow- weighted average).

suMMary and conclusIons

We evaluated solute load estimation methods 
over a wide range of concentration dynamics 
for four solutes (SO 2−

4 , Si, NO −

3 , and DOC) at 
five diverse small watersheds. The best ap-
proach to load estimation and the corresponding 
accuracy and precision depended upon specific 
solute concentration dynamics. By assessing 

three common load estimation methods (period- 
weighted approach, regression- model method, 
and composite method) with various subsets 
of the data (weekly plus events, weekly, and 
monthly), it was generally possible to identify 
the best approach for each solute for the data 
available.

No load estimation method was always su-
perior. The composite method was the best 
approach for solutes with moderate (SO 2−

4  at 
Panola  Mountain and DOC at all watersheds ex-
cept Hubbard Brook) to strong (Si, SO 2−

4  at all 
watersheds except Panola Mountain, and DOC 
at Hubbard Brook) concentration–discharge 
relationships (model R2 values > about 0.3). In 
these cases, bias and precision were typically 
categorized as good except where the relative 
SEs of the residuals were about 15% or more. 
For solutes with a moderate concentration–dis-
charge relationship, biases ranged from good to 
poor, and precisions typically ranged from good 
to fair, with errors generally worse with less 
frequent sampling. The regression- model meth-

Fig. 10. Flowchart for selecting most appropriate load estimation method using model diagnostics and 
Figs. 8 and 9. [SE, standard error].
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od performed almost as well as the composite 
method when concentration–discharge relation-
ships were strong, but did not perform as well 
when the concentration–discharge relation was 
only moderate. The period- weighted approach 
was typically biased without sufficient event 
sampling, and precisions were categorized as 
good only when the relative SE of concentrations 
was below about 20%.

The period- weighted approach was the best ap-
proach for solutes with nonexistent or weak con-
centration–discharge relationships (NO −

3 ; model 
R2 values < about 0.3). Period- weighted approach 
biases and annual precisions ranged from good 
to poor, and were better when the relative SE of 
the concentrations was lower and for cases when 
the autocorrelation of the  concentrations was 
higher and accompanied by more frequent sam-
pling. The regression- model method was often 
biased, an indication of either weak or poorly fit 
models. Regression- model precisions were par-
ticularly poor as the regression models had little 
ability to predict short- term variations in concen-
tration.

Sample and model diagnostics can be used 
to select the most appropriate load estimation 
method and approximate the bias and precision 
expected without the need for more complex 
over-  and sub- sampling analyses. For the period- 
weighted approach, the relative SE of the concen-
trations and autocorrelation of the concentrations 
were useful diagnostics, with more accurate and 
precise estimates when relative SEs were lower 
and autocorrelations were higher. For methods 
that used regression models, the relative SE of 
the model residuals was a good indication of er-
rors, while autocorrelation in the residuals indi-
cated how useful the composite method would 
be at improving precision at shorter reporting in-
tervals compared to a regression- model method. 
But when autocorrelations were <0.2, precisions 
were similar for both methods and the simpler 
regression- model method should be used. These 
guidelines should be applicable to other load es-
timation studies.
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