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Abstract.   Monitoring solutes in precipitation inputs and stream water exports at small watersheds has 
greatly advanced our understanding of biogeochemical cycling. Surprisingly, although inputs to and out-
puts from ecosystems are instrumental to understanding sources and sinks of nutrients and other ele-
ments, uncertainty in these fluxes is rarely reported in ecosystem budgets. We illustrate error propagation 
in input–output budgets by comparing the net hydrologic flux of Ca in a harvested and reference water-
shed at the Hubbard Brook Experimental Forest, New Hampshire. We identify sources of uncertainty and 
use a Monte Carlo approach to combine many sources of uncertainty to produce an estimate of overall 
uncertainty. Sources of uncertainty in precipitation inputs included in this study were: rain gage efficiency 
(undercatch or overcatch), gaps in measurements of precipitation volume, selection of a model for interpo-
lating among rain gages, unusable precipitation chemistry, and chemical analysis. Sources of uncertainty 
in stream water outputs were: stage height–discharge relationship, watershed area, gaps in the stream 
flow record, chemical analysis, and the selection of a method for flux calculation. The annual net hydrolog-
ic flux of Ca in the harvested and reference watersheds was calculated from 1973 through 2009. Relative to 
the reference watershed, the harvested watershed showed a marked increase in Ca flux after it was cut in 
1983–1984, and slowly declined toward pretreatment levels thereafter. In 2009, the last year evaluated, the 
95% confidence intervals for the annual estimates approach the 95% confidence intervals of the pretreat-
ment regression line, suggesting that the increased net loss of Ca in the harvested watershed may soon be 
indistinguishable from the reference. Identifying the greatest sources of uncertainty can be used to guide 
improvements, for example in reducing instances of unusable precipitation chemistry and gaps in stream 
runoff. Our results highlight the value of estimating uncertainty in watershed studies, including those in 
which replication is impractical.
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Introduction

Small watersheds are hydrologically distinct 
landscape units that integrate chemical, physi-
cal, and biological processes. The basic premise 
of the small watershed approach is that the flux 
of water and chemical elements in and out of 
headwater catchments can be used to evaluate 
net gains or losses (Bormann and Likens 1967, 
Likens 2013). Precipitation inputs are calculated 
as the product of the chemical concentration and 
volume of precipitation. Outputs are typically 
calculated as the product of the chemical concen-
tration and stream runoff at the watershed outlet. 
The net hydrologic flux is the difference between 
precipitation inputs and stream outputs. For 
some elements, other fluxes are needed to close 
the budget, such as gas exchange and chemical 
weathering (Likens 2013). Quantification of inter-
nal element pools (e.g., biomass, soil) and fluxes 
(e.g., biotic uptake, litterfall, decomposition) can 
provide additional information and insight for 
interpreting inputs and outputs.

Surprisingly, although ecosystem inputs and 
outputs are used to describe sources and sinks 
of nutrients and other elements, uncertainty 
in these fluxes is rarely reported in ecosystem 
budgets (Harmel et  al. 2006, 2009). This omis-
sion stems in part from the fact that each ecosys-
tem is unique, making it challenging to identify 
replicate sampling units. In paired-watershed 
experiments (e.g., Bates and Henry 1928, Bosch 
and Hewlett 1982, Likens 1985), a stream drain-
ing an experimentally manipulated watershed 
is compared to a stream from a nearby unma-
nipulated reference watershed; the treatment is 
not replicated. Even if replication were possible 
(Likens 1985), monitoring the number of water-
sheds required for an acceptable level of confi-
dence may be prohibitively expensive. Without 
replication, it is still possible to describe the 
uncertainty in the measurements, but multiple 
sources of uncertainty are involved and the cal-
culations are complex. Methods and tools for 
quantifying uncertainty are becoming more 
available and there is a growing recognition of 
the importance of including estimates of uncer-
tainty at the ecosystem scale of measurement 
(Beven 2006, Pappenberger and Beven 2006, 
Rode and Suhr 2007, Harmel et al. 2009, Yanai 
et al. 2012).

A previous study by Yanai et  al. (2015) iden-
tified sources of uncertainty in stream solute 
export at the Hubbard Brook Experimental Forest 
(HBEF) in New Hampshire, USA, and compared 
them to other watershed studies at the Coweeta 
Hydrological Laboratory, North Carolina, USA, 
and Gomadansan Experimental Forest, Nara 
Prefecture, Japan. Here, we build on that work 
by using Monte Carlo methods to combine esti-
mates of individual sources of uncertainty at the 
HBEF into an overall estimate that includes pre-
cipitation as well as stream flow. To our knowl-
edge, this is the first report of uncertainty in net 
hydrologic flux for a paired-watershed study.

To demonstrate this approach, we evaluate the 
legacy effects of disturbance on the net hydro-
logic flux of calcium (Ca) following a whole-tree 
harvest at the HBEF. Whole-tree harvesting in-
volves the removal of most of the aboveground 
biomass (boles and branches), raising concerns 
about nutrient depletion and forest productivity 
(Likens and Bormann 1974, Thiffault et al. 2011, 
Vadeboncoeur et al. 2014). In recent years, there 
has been renewed interest in this management 
practice due to rising demand for biofuels to 
meet energy needs. Calcium is an essential nu-
trient that limits forest productivity at the site 
(Likens et  al. 1998, Battles et  al. 2014). The risk 
of Ca limitation is exacerbated in the northeast-
ern United States, where decades of acidic depo-
sition have depleted essential base cations, such 
as Ca, from forest soils (e.g., Federer et al. 1989, 
Likens et al. 1996, Lawrence et al. 1999).

In the year following the experimental whole-
tree harvest at the HBEF, the net loss of Ca in the 
treated watershed was 20  kg Ca ha−1  yr−1 com-
pared to 5 kg Ca ha−1 yr−1 in the reference water-
shed (Fig.  1; Likens et  al. 1998). This difference 
in the Ca flux between watersheds was initially 
obvious; however, net Ca losses in the treated 
watershed declined over the subsequent 26  yr, 
and the fluxes in the two watersheds have been 
converging over time. We illustrate the applica-
tion of uncertainty analysis to ecosystem budgets 
by evaluating whether the difference in net losses 
of Ca between watersheds is still greater than the 
uncertainty of the values.

We identified and quantified uncertainty as-
sociated with catch efficiency (undercatch or 
overcatch) of precipitation gages, gaps in pre-
cipitation volume, the selection of a model for 
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interpolating precipitation gage data, unus-
able precipitation chemistry, chemical analysis, 
stream stage height–discharge relationship, wa-
tershed area, gaps in the stream flow record, and 
the selection of a method for stream flux calcula-
tion. Additional sources of uncertainty (e.g., sam-
pling frequency, preservation of samples, stage 
height measurement) have been identified in oth-
er studies (Ramsey 1998, Harmel et al. 2006, Mc-
Millan et al. 2012), but we focused on those most 
likely to be important and with sufficient data 
for analysis. We used a Monte Carlo approach to 
combine these sources of uncertainty in the net 
hydrologic flux of Ca at two paired watersheds at 
the HBEF. The contributions of individual sourc-
es of uncertainty were also quantified to identify 
the importance of each source of uncertainty in 
our estimates. Recognizing which sources con-
tribute the most uncertainty could help guide im-
provements to monitoring designs to minimize 
uncertainty in input–output budgets.

Materials and Methods

Study site and watershed treatment
The Hubbard Brook Experimental Forest is 

located in the White Mountain National Forest 
in central New Hampshire, USA (43°56′  N, 
71°45′  W). The northern hardwood forest is 
dominated by sugar maple (Acer saccharum 
Marsh.), American beech (Fagus grandifolia 
Ehrh.), and yellow birch (Betula alleghaniensis 
Britt.), which comprise > 80% of the basal area. 
At higher elevations, the forest is largely 

composed of two coniferous species, red spruce 
(Picea rubens Sarg.), and balsam fir (Abies bal-
samea (L.) Mill.), along with the deciduous paper 
birch (Betula papyrifera Marsh.). Soils consist 
mostly of base-poor Spodosols developed in 
glacial drift. Depth to bedrock is variable, and 
is generally 0–3  m in the area of the experi-
mental watersheds (Johnson et al. 2000). Several 
different whole-watershed manipulations have 
occurred at the HBEF (Hornbeck et  al. 1997, 
Campbell et  al. 2013), including the whole-tree 
harvest experiment that is the focus of this 
study.

A commercial whole-tree harvest experiment 
was conducted in Watershed 5 (W5) at the HBEF 
to evaluate the effects of intensive harvesting on 
hydrology, biogeochemistry, and forest produc-
tivity (Huntington and Ryan 1990, Dahlgren and 
Driscoll 1994, Johnson 1995). All trees greater 
than 5 cm diameter at breast height were cut and 
removed from the watershed. The lower part of 
the watershed was harvested between October 
1983 and January 1984, and the upper part was 
harvested the following summer. Approximately 
3% of the watershed was not harvested because 
of inaccessible terrain. An adjacent watershed 
(W6) remained uncut, and served as a reference 
for the paired-watershed analysis.

Monte Carlo analysis
The time frame for the uncertainty analysis 

was 1973–2009 using a June 1 water year (e.g., 
WY 2004 is from 1 June 2004 through 31 May 
2005). Collection and analysis of precipitation 

Fig. 1. Net hydrologic flux of Ca (kg Ca ha−1 yr−1) for the experimentally harvested watershed (W5) and 
adjacent reference watershed (W6).
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and stream water chemistry began 10  years 
earlier, with the inception of the Hubbard Brook 
Ecosystem Study (HBES) in 1963. However, we 
did not attempt to analyze the uncertainty prior 
to water WY 1973 because the methods for 
collecting precipitation chemistry during the 
first decade of the HBES were slightly different 
(Buso et  al. 2000), which would have added 
additional complexity to the analysis. The time 
frame for which uncertainty was estimated in-
cluded an 11-yr period before the whole-tree 
harvest (i.e., 1973–1983), during which time both 
watersheds remained unmanipulated.

The uncertainty analysis was conducted with 
the Monte Carlo method, which is a formal 
probabilistic approach to uncertainty analy-
sis that makes repeated estimates by randomly 
sampling from distributions for each variable 
used in the calculation (Press et  al. 1986). The 
analyses were performed in the statistical com-
puting language R (v3.2.0), and the documented 
computer code is included in the archived Ap-
pendix S1. In this application, the net hydrologic 
flux of Ca was calculated using the traditional 
method at the HBEF, as described in subsequent 
sections (see also Buso et  al. 2000). The uncer-
tainty in these values (i.e., 95% confidence in-
tervals) was then estimated by repeated (10,000 
times) random sampling of precipitation and 
stream water volume and chemistry values from 
distributions of possible values. Confidence in-

tervals were determined from the 2.5 and 97.5 
percentiles of the distribution of possible val-
ues, indicating with 95% certainty that the true 
value falls within this range. With this method, 
the distribution need not be normally distribut-
ed, and the error bars may be asymmetrical. We 
conducted the Monte Carlo with all the sources 
of uncertainty combined, and then with only one 
source of uncertainty at a time to evaluate the 
relative importance of each source of uncertain-
ty. The following is an explanation of how each 
source of uncertainty was estimated, including 
the determination of input distributions for the 
Monte Carlo.

Uncertainty in precipitation Ca fluxes
Gaps in precipitation volume.—Gaps in the 

record of precipitation volume are infrequent at 
the HBEF; however, on rare occasions data can 
be lost for various reasons, which contributes to 
the uncertainty in inputs of Ca in precipitation. 
We  used field notes from WY 1973–2009 
to identify and characterize gaps in precipitation 
volume. Across all 24 precipitation gage 
stations (Rain Gage-RG) at the HBEF (Fig. 2), the 
proportion of  gaps in precipitation volume 
attributable to  technician error was 53%, 
equipment failure  40%, animal activity 5%, 
weather-related phenomena 1%, and vandalism 
1%. For the precipitation gages used to calculate 
precipitation at W5 and W6 (i.e., RG6, 7, 9, 10, 

Fig.  2. Map of the Hubbard Brook Experimental Forest and study watersheds showing locations of the 
harvested (W5) and reference (W6) watersheds, weirs, precipitation gage network, and bulk collectors for 
measuring precipitation chemistry.



June 2016 v Volume 7(6) v Article e012995 v www.esajournals.org

SPECIAL FEATURE: UNCERTAINTY ANALYSIS	 CAMPBELL ET AL.

11), the average number of gaps was 0.09 per 
precipitation gage per year, totaling 0.63  d of 
missing data per precipitation gage per year. For 
W5, which is calculated based on five 
precipitation gages (i.e., RG6, 7, 9, 10, 11), there 
were 9 years (of 37) that contained gaps; for W6, 
where precipitation volume is calculated based 
on three precipitation gages (i.e., RG9, 10, 11), 
there were 7  years that contained gaps. Gaps 
generally last a week or less because problems 
are discovered and addressed during routine 
weekly collections.

When precipitation volume data are missing, 
the gaps are normally filled in one of two ways. 
For RG6 and 10, missing values are filled by 
substituting values from co-located recording 
precipitation gages. For the other gages, which 
do not have co-located recording precipitation 
gages, missing values are filled by averaging the 
values from several adjacent precipitation gages 
(RG7 is filled with the mean of RG1, 2, 4, and 8; 
RG9 with the mean of RG10 and 11; and RG11 
with the mean of RG9 and 10; Fig. 2).

To quantify the uncertainty due to filling gaps 
in precipitation volume for each precipitation 
gage, we created artificial gaps by randomly 
sampling 16 week-long periods from WY 1973 
through 2009 across all precipitation gages used 
in the analysis (i.e., RG6, 7, 9, 10, and 11). The 
number of gaps created (i.e., 16) was determined 
from the actual number of gaps in the record, and 
weeks that contained actual gaps were excluded 
from the pool of potential weeks to sample. For 
each gap, an error term was added to each day 
by randomly sampling from a distribution of the 
differences between the actual daily precipita-
tion and daily precipitation calculated using the 
gap filling method (Fig. 3a). Days without mea-
sureable precipitation were not included in the 
distribution.

Precipitation gage efficiency.—At the HBEF, 
precipitation volume is measured weekly with 
National Weather Service 8-inch (20-cm) 
standard precipitation gages. Even though these 
gages are equipped with single Alter wind 
shields, they are prone to wind-induced catch 
error (Yang et  al. 1998). To estimate the 
uncertainty associated with precipitation catch 
efficiency, we used data from an intercomparison 
of precipitation measurement (Goodison et  al. 
1998, Yang et al. 1998) conducted by the World 

Meteorological Organization. This study 
included a comparison of a National Weather 
Service 8-inch standard precipitation gage 
equipped with an Alter shield, such as those 
used at the HBEF, with a manual Tretyakov gage 
equipped with an octagonal vertical double fence 
shield (the Double Fence Intercomparison 
Reference, DFIR), which provides more accurate 
measurements of precipitation volume (Yang 
et  al. 1995). Catch efficiency results from the 
Sleepers River Watershed in Danville, Vermont, 
USA, were used in this analysis because among 
sites included in the intercomparison (Goodison 
et al. 1998), it was the station closest to the HBEF 
(60 km northwest) and has a similar climate.

Uncertainty due to precipitation gage catch 
efficiency was evaluated by comparing precipi-
tation volume collected with the 8-inch standard 
precipitation gage and the DFIR. In this analysis, 
we used precipitation volume (> 1 mm) record-
ed for 173 events during December 1986 through 
April 1992. Separate sampling distributions for 
rain and snow were generated by calculating 
the percent difference in precipitation volume 
between the two precipitation gage types for 
each event (Fig. 3b). When air temperature at the 
HBEF was > 0°C, the uncertainty was estimated 
by multiplying the daily precipitation volume 
from an individual rain gage by a percentage 
that was randomly selected from the distribution 
for rain, and when the air temperature was < 0°C, 
percentages from the distribution for snow were 
used.

Spatial interpolation of precipitation volume.—
Because precipitation volume is measured at a 
network of precipitation gages distributed 
throughout the area of the experimental 
watersheds, spatial interpolation is required to 
convert these point measurements to an areal 
estimate for the watersheds. To quantify the 
uncertainty due to the selection of a spatial 
interpolation method, we compared the Thiessen 
polygon method, which has traditionally been 
used at the HBEF, with four common interpolation 
methods: inverse distance weighting, spline, 
regression, and kriging (Yanai et al. 2012). Based 
on this comparison, the uncertainty in 
precipitation volume for each method (expressed 
as a percent of the Thiessen polygon method) 
ranged from 99.5 to 100.3% for W5 and 100.5 to 
101.6% for W6 (Fig. 3c). For each iteration of the 
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Monte Carlo, the percent uncertainty from one of 
these methods was randomly selected and 
multiplied by the precipitation volume.

Unusable precipitation chemistry.—In addition to 
uncertainty in precipitation volume, there is also 
uncertainty in precipitation chemistry, inclu
ding  uncertainty associated with precipitation 
chemistry samples that are rejected (e.g., because 
of contamination). The most common reason for 
unusable precipitation chemistry data is sample 
contamination due to pollen, insect bodies, bird 
droppings, and unidentified particulate matter 
(Buso et  al. 2000). Precipitation samples for 
chemical analyses are collected with bulk 

collectors mounted 2  m above the ground in 
areas that are cleared of vegetation (Buso et  al. 
2000). During the warmer months when 
precipitation falls mostly as rain, these collectors 
consist of a high-density polyethylene (HDPE) 
funnel connected by tubing to a sample bottle. 
During winter, when precipitation falls mostly 
as snow, an open-top HDPE bucket is used.

Precipitation samples for chemical analysis 
have been collected at multiple locations for 
varying time periods at the HBEF. For WY 1973–
2009, data from RG11 are used to calculate the 
chemical inputs in precipitation to W5 and W6. 
A nearby precipitation collector, RG1 (Fig.  2), 

Fig. 3. Distributions for each source of uncertainty in precipitation and stream water that was included in the 
Monte Carlo analysis.
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has been in operation from 1987 to 2010 and is 
used when data from RG11 are unavailable (re-
ferred to as spatial infilling in Fig. 3d). When RG1 
data are unavailable, missing chemistry values 
for RG11 are filled using the next uncontam-
inated RG11 value in the database (referred to 
as temporal infilling in Fig. 3d). We evaluated the 
error due to this substitution by comparing the 
Ca concentrations for RG11 and RG1 for dates 
where both are reported and created a distribu-
tion of differences (Fig. 3d). Similarly, we created 
a distribution of differences between two weekly 
values for all the weekly values in the data set to 
evaluate the error associated with the gap filling 
approach that was used. We sampled random-
ly from this distribution for the number of oc-
casions per year that samples were substituted 
in the long-term precipitation chemistry record.

Chemical analysis.—The measurement of Ca 
concentration is a source of uncertainty in both 
precipitation and stream fluxes. After water 
samples were collected, they were shipped to the 
Cary Institute of Ecosystem Studies in Millbrook, 
New York for chemical analysis. Precipitation 
and stream samples from the HBEF have been 
analyzed for Ca by flame atomic absorption 
spectrophotometry for the period reported here 
(i.e., WY 1973 through 2009; Buso et al. 2000). The 
uncertainty due to chemical analysis was 
determined by comparing quality control 
standards of a known concentration with the 
value measured in the laboratory (Buso et  al. 
2000, Yanai et al. 2015). We used quality control 
samples from 1999 to 2011 for concentrations up 
to 10 mg L−1, which covers the range of observed 
Ca concentrations in stream water and 
precipitation at the HBEF. There were 961 
observations in this data set, and the differences 
between the certified and measured 
concentrations had a mean absolute value of 
9.3 μg L−1. An error term for each precipitation 
and stream chemistry sample was determined by 
randomly sampling from the distribution of 
differences between the certified and measured 
concentrations of quality control standards 
(Fig. 3e).

Uncertainty in stream Ca fluxes
Stage height–discharge relationship.—Much like 

the flux of Ca in precipitation, the flux of Ca in 
stream water is calculated as the product of the 

volume of stream water and Ca concentration. 
Stream runoff is measured at a v-notch weir 
located at the watershed outlet (Fig.  2; Bailey 
et  al. 2003). The stage height (water level) is 
recorded continuously in a stilling well adjacent 
to the weir, with a float that is connected to a 
chart recorder. The charts are digitized (unequal 
intervals) to produce a continuous record of 
stage height. The conversion of stream stage 
height to discharge introduces a source of 
uncertainty that we estimated by comparing two 
methods: (1) a theoretical equation for a 90° v-
notch weir (Brater et  al. 1996); and (2) field 
measurements that were made by timing the 
capture of stream water in a large container. This 
method is impractical at high flow, so the 
comparison was limited to periods when 
discharge was less than 1.3 L s−1 in W5 and less 
than 2.5 L s−1 in W6. Although stream discharge 
in W5 was below the 1.3 L s−1 threshold on 32% 
of the days, it comprised only 2% of the runoff. 
In W6, discharge was below the 2.5  L s−1 
threshold on 69% of the days and comprised 
16% of the runoff. To estimate uncertainty at low 
flow, we calculated discharge for each stage 
height value using both methods (i.e., theoretical 
equation and field measurements) and then 
randomly sampled a distribution of the 
differences between methods (Fig.  3f). The 
individual stage height values were then 
summed to daily totals.

Gaps in stream runoff measurements.—Gaps in 
stream runoff data are more common than gaps 
in precipitation volume data. We evaluated 
stream flow gaps in W5 and W6 at the HBEF 
from 1996 through 2009. Prior to 1996, gaps were 
filled, but not documented, and thus would be 
difficult to categorize. For the 14-yr period when 
gaps were well documented, we analyzed the 
causes of gaps and evaluated the importance of 
each type of gap weighted by duration. Gaps in 
stream runoff were caused by debris in the v-
notch (22% in W5; 44% in W6), malfunctioning 
chart recorders (39% in W5; 21% in W6), ice in the 
v-notch (30% in W5; 25% in W6), weir 
maintenance and repairs (5% in W5; 7% in W6), 
and technician error (4% in W5; 3% in W6). Most 
of the gaps due to malfunctioning chart recorders 
were attributed to faulty clocks (79% in W5; 68% 
in W6), which are difficult and time consuming 
to repair.
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We characterized the uncertainty due to stream 
flow gaps by randomly generating gaps in the 
daily data based on the number of gaps per year 
from 1996 to 2009 (670 gaps over 37  yr or 18.1 
gaps yr−1 for W5; 714 gaps over 37 yr or 19.3 gaps 
yr−1 for W6). The length of the gap was randomly 
selected from a distribution of actual gap lengths 
recorded (W5 gap lengths ranged from 1 to 613 h 
with a mean of 50; W6 gap lengths ranged from 
1 to 294 h with a mean of 26). Gaps in the stream 
flow record were filled using a regression model 
describing the relationship in discharge between 
Watersheds 5 and 6. The relationship was estab-
lished with daily stream flow data from 1996 to 
2009 (R2  =  0.98), excluding dates with missing 
data. Gaps were filled by randomly sampling 
from a distribution of the differences between the 
actual and modeled stream flow (Fig. 3g).

Watershed area.—Watershed area is needed to 
convert stream discharge (L s−1) to stream flow 
(mm d−1), which can be compared to the 
precipitation in units of depth, and can be used 
to compare stream flow among watersheds of 
different sizes. Consequently, watershed area is a 
source of uncertainty in stream runoff. When the 
watersheds were first established at the HBEF, 
the boundaries were delineated by a land survey 
based on field observations of the topographic 
divides. More recently, watershed boundaries 
have been mapped with a LIDAR-based digital 
elevation model (1 m) in a geographic information 
system (ArcGIS v10.1). The areas estimated for 
W5 and W6 were 21.9 and 13.6 ha by survey and 
22.6 and 13.1 ha by LIDAR, respectively. For each 
watershed, we calculated stream flow in mm by 
randomly dividing discharge (L s−1) by one of the 
two different estimates of watershed area 
(ground survey vs. LIDAR; Fig. 3h).

Temporal interpolation of stream chemistry.—
Many different algorithms have been developed 
to calculate the flux of elements in stream water 
(e.g., Swistock et al. 1997, Ullrich and Volk 2010). 
These algorithms combine the continuous record 
of stream flow with measurements of chemistry 
collected at discrete intervals (weekly intervals at 
the HBEF). Because stream solute flux is calculated 
as the product of concentration at one point in 
time and discharge over an interval, there is 
uncertainty associated with the temporal pattern 
of the concentration between measurement dates. 
To quantify the uncertainty due to the algorithm 

used, we compared two different methods for 
calculating stream element fluxes. The flux 
calculation method traditionally used at the HBEF 
is a period-weighted approach that involves 
multiplying the chemical concentration (mg L−1) 
for each sample date by the daily stream flow 
(mm d−1) for that day. For days between sampling 
dates, the average of the previous and subsequent 
concentrations is multiplied by the daily stream 
flow (Buso et  al. 2000). The second approach 
applied was linear interpolation, which is similar 
to the method described previously, with the 
exception that the daily chemical concentra
tion  between sampling dates is calculated 
by  linear interpolation rather than using the 
mean. In the Monte Carlo analysis, uncertainty 
due to the selection of a flux calculation method 
was determined by randomly sampling from a 
distribution of differences between the two 
methods considered (Fig. 3i).

These two period-weighted flux calculation 
methods used are similar and tend to be biased 
if there is a relationship between concentration 
and stream flow: the calculated flux is too low 
when there is a positive relative relationship, and 
too high when there is a negative relationship. 
In such cases, estimates of chemical concentra-
tions between sampling dates can be improved 
with regression models that incorporate stream 
flow and possibly other explanatory variables, 
such as time of year or turbidity (e.g., Johnson 
et  al. 1969). The composite method for interpo-
lating concentration data has gained popularity 
in recent years because it is a hybrid technique 
that uses observed concentrations to improve the 
concentrations predicted by regression methods 
(Aulenbach and Hooper 2006). These discharge-
based methods can improve estimates of stream 
concentrations, but were deemed unsuitable for 
our analysis because of the poor concentration–
discharge relationship for Ca at the HBEF (John-
son et al. 1969). Weekly data from the reference 
watershed (W6) during the period analyzed (WY 
1973–2009) showed only a very weak positive 
relationship between log Ca concentration and 
log discharge at the time the sample was collect-
ed (N = 2195; R2 = 0.06). Aulenbach et al. (2016) 
suggest that period-weighted approaches are 
most appropriate in cases such as ours, in which 
a concentration–discharge relationship is absent 
or weak (i.e., model R2  <  ~0.3); therefore, only 
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period-weighted approaches were considered in 
our analysis.

Results

The annual precipitation Ca flux was lower 
and had a narrower range (0.6 to 2.0  kg Ca 
ha−1  yr−1 in both watersheds) than the stream 
water flux (6.6 to 21.3  kg Ca ha−1  yr−1 in the 
harvested watershed [W5] and 4.4 to 19.0  kg 
Ca ha−1  yr−1 in the reference watershed [W6]). 
Subtracting annual Ca inputs in precipitation 
from exports in stream water yields a long-
term average net hydrologic loss of 10.4  kg 
Ca ha−1  yr−1 in W5 and 7.1  kg Ca ha−1  yr−1 
in W6 for the entire period considered (1973–
2009; Table 1). Differences in the net hydrologic 
flux of Ca between watersheds are due to 
differences in stream water losses, as annual 
differences in precipitation inputs of Ca between 
watersheds were minimal during the 37-yr 
period (<  0.2  kg Ca ha−1  yr−1, relative to out-
puts of Ca in stream water [ranging from 0.8 
to 14.8  kg Ca ha−1  yr−1]).

For the 20 years prior to the whole-tree harvest 
(1963–1982), the annual net hydrologic flux of Ca 
at W5 was consistently greater than the flux at 
W6 by an annual average of 1.1 kg Ca ha−1 yr−1 
(Fig.  1). Regression analysis showed that there 
was a strong linear relationship in the annual net 
hydrologic flux of Ca between W5 and W6 be-
fore the whole-tree harvest (R2 = 0.98, P = < 0.001; 
Fig. 4). After the whole-tree harvest, stream water 
Ca losses in the cut watershed increased marked-
ly relative to the reference. The annual difference 
in Ca export (14.8 kg Ca ha−1 yr−1) was greatest 
the year immediately after the cut was completed 
(WY 1984) and declined thereafter. The minimum 
difference after the cut was 1.5 kg Ca ha−1 yr−1 in 
the last year evaluated (2009). The average differ-

ence in the net hydrologic flux of Ca between the 
two watersheds was 1.1 kg Ca ha−1 yr−1 for the 
20-yr preharvest period (1963–1982), which was 
3.0 kg Ca ha−1 yr−1 less than the average differ-
ence in Ca flux for the 26-yr postharvest period 
(4.1 kg Ca ha−1 yr−1 for WY 1984–2009). Assum-
ing a background difference of 1.1 kg Ca ha−1 yr−1 
based on pretreatment data, the harvest resulted 
in a net loss of 78.2 kg Ca ha−1 during the post-
treatment period.

Table 1. The long-term (WY 1973–2009) average annual precipitation, stream water, and net hydrologic flux of 
Ca (kg Ca ha−1 yr−1), 95% confidence interval surrounding the flux (kg Ca ha−1 yr−1), and coefficient of varia-
tion (standard deviation divided by the mean) for Watershed 5 and 6.

Source
Watershed 5 Watershed 6

Flux 95% CI CV (%) Flux 95% CI CV (%)

Precipitation 1.1 0.4 10.1 1.1 0.4 10.0
Stream water 11.5 0.3 0.6 8.2 0.2 0.6
Net −10.4 0.5 1.3 −7.1 0.5 1.8

Fig.  4. Annual net hydrologic flux of Ca (kg Ca 
ha−1  yr−1) in the harvested (W5) vs. reference (W6) 
watersheds. Solid black circles indicate the period 
before the whole-tree harvest. The regression line for 
the preharvest period is shown, with thinner lines 
representing the 95% confidence intervals for the 
regression. Crossed bars indicate the posttreatment 
period with the size of the bars showing the 95% 
confidence intervals determined with the Monte 
Carlo-based uncertainty analysis.
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To characterize uncertainty in the net hydro-
logic flux of Ca, we identified and quantified five 
sources of uncertainty in precipitation inputs: 
precipitation gage efficiency (undercatch or over-
catch), gaps in precipitation volume, selection of 
a model for interpolating among precipitation 
gages, unusable precipitation chemistry, and 
chemical analysis. During the period for which 
uncertainty was evaluated (i.e., WY 1973–2009), 
the combined uncertainty (i.e., 95% confidence 
intervals) in the annual precipitation flux ranged 
from 0.2 (WY 2002) to 1.4 (WY 1977) with a long-
term mean of 0.4  kg Ca ha−1  yr−1 (Table  1). In 
stream water, we also identified and quantified 
five sources of uncertainty: stage height–dis-
charge relationship, watershed area, gaps in the 
stream flow record, chemical analysis, and the 
selection of a method for flux calculation. Based 
on this evaluation for the same period as precip-
itation (WY 1973–2009), combined uncertainty in 
the stream flux ranged from 0.2 (WY 2009) to 0.6 
(WY 1984) with a mean of 0.3 kg Ca ha−1 yr−1 for 
W5 and 0.1 (WY 2002) to 0.3 (WY 1973) with a 
mean of 0.2  kg Ca ha−1  yr−1 for W6. The range 
of uncertainty in the net hydrologic flux was 0.3 
(WY 2002) to 1.4 (WY 1977) with a mean of 0.5 kg 
Ca ha−1 yr−1 for W5 and 0.2 (WY 2002) to 1.5 (WY 
1077) with a mean of 0.5 kg Ca ha−1 yr−1 for W6. 
The postharvest differences in the annual net hy-
drologic flux between watersheds were consis-
tently greater than the uncertainty in the values. 
In WY 2009, which was the last year evaluated, 
the 95% confidence intervals for the annual esti-
mates approach the 95% confidence intervals of 
the pretreatment regression line (Fig. 5), suggest-
ing that the increased net loss of Ca in response 
to the harvest in W5 may soon no longer be dis-
tinguishable from the reference W6.

The individual sources of uncertainty were 
ranked according to their contribution to the 
overall uncertainty in the net hydrologic flux 
(Fig. 5). The ranking of uncertainty sources was 
the same for W5 and W6. For the precipitation 
flux, precipitation chemistry substitution was 
the major source of uncertainty, contributing 
~0.30  kg  Ca  ha−1  yr−1 in both watersheds. For 
stream runoff, gaps in the record were the great-
est source of uncertainty, contributing 0.21 kg Ca 
ha−1 yr−1 in W5 and 0.15 kg Ca ha−1 yr−1 in W6. 
Chemical analysis was the second greatest source 
of uncertainty for both precipitation and stream 

water, with chemical analysis of precipitation 
contributing slightly more (0.22 kg Ca ha−1 yr−1 
in W5 and W6) to the uncertainty than the chem-
ical analysis of stream water (0.15 kg Ca ha−1 yr−1 
in W5 and 0.12  kg Ca ha−1  yr−1 in W6). Some 
sources of uncertainty that we quantified were 
negligible. The precipitation interpolation meth-
od, gaps in precipitation volume, and stream 
stage–discharge relationship were relatively mi-
nor sources of uncertainty, each comprising less 
than 0.5% of the sum of all sources of uncertainty.

Discussion

Benefits of uncertainty analysis
Estimating uncertainty is essential to evaluating 

the significance of results from cross-site com-
parisons, as we need to distinguish fundamental 
differences in ecosystem function from differ-
ences due to sampling protocols or computational 
methods. Even within sites, estimates of uncer-
tainty are needed to evaluate effects with con-
fidence. Without estimates of uncertainty it may 
be difficult to determine whether responses are 
due solely to the experimental manipulation or 
are the result of some other influence (e.g., nat-
ural variability). Whole-watershed experiments 
are normally unreplicated because of the insur-
mountable challenge in finding suitable replicates 
and expense of watershed-scale manipulations. 
Estimates of uncertainty can be used to report 

Fig. 5. Contribution of each source of uncertainty 
(kg Ca ha−1  yr−1) to the overall error in the net 
hydrologic flux of Ca at the harvested (W5) and 
reference watersheds (W6) shown in order of 
importance.
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statistical confidence in cases where replica-
tion  is  not possible (e.g., small watershed 
experiments).

In this study, uncertainty analysis was used to 
evaluate whether elevated annual net losses of Ca 
due to whole-tree harvesting are greater than the 
uncertainty in the values in the years after the cut. 
The regression approach used (Fig. 4) accounts for 
pretreatment conditions, which in this case showed 
higher net losses in W6 compared to W5. Possible 
causes for the pretreatment difference between 
watersheds include differences in hydrologic flow-
paths, groundwater inputs, mineralogy, or weath-
ering rates (Likens et al. 1998). Results of our anal-
ysis indicate that the harvest-induced net Ca loss 
has lasted for 26 years, but soon may no longer be 
distinguished from the uncertainty in the measure-
ments. This example demonstrates the usefulness 
of combining the uncertainty from various sources 
into a single estimate.

Knowing the individual contributions of differ-
ent sources of uncertainty is another important ben-
efit of uncertainty analysis because it can be used to 
determine how best to allocate limited resources to 
improve data collections and analyses. It should be 
noted that the sum of the individual uncertainties 
(Fig. 5) exceeded the estimate of the overall uncer-
tainty in the net hydrologic flux (Table 1) because 
when the overall estimate of uncertainty is deter-
mined with Monte Carlo, a portion of the individ-
ual sources of uncertainty cancels out. Thus, the 
individual sources of uncertainty are not additive 
when computed independently. The same is true 
for analytical uncertainty propagation methods.

Uncertainty in precipitation
Based on our analysis, the greatest source 

of uncertainty was precipitation chemistry sub
stitution (Fig.  5). When a weekly precipitation 
chemistry sample is missing or deemed unus-
able because of contamination, it is filled with 
a value from a nearby precipitation collector. 
If that sample were also unavailable, the gap 
would be filled with a value from the subse-
quent week. The sample from the nearby pre-
cipitation collector is typically more similar to 
the actual value than the sample from the 
subsequent week, as indicated by the narrower 
distribution in Fig.  3d. To reduce the uncer-
tainty due to unusable precipitation chemistry 
data, co-located collectors could be installed 

so that the missing values are filled with better 
estimates. Of course the benefit of reduced 
uncertainty has to be weighed against the cost 
of collecting and analyzing additional precip-
itation samples.

Improving the accuracy of the chemical analy-
sis of Ca would also help reduce uncertainty, as 
this was the second greatest source of uncertain-
ty for both precipitation and stream water fluxes. 
Stricter laboratory protocols could potentially 
improve estimates (e.g., more stringent require-
ments for blanks and standards, running every 
sample multiple times), but would be labor-
intensive and costly. For some analytes, improve-
ments in the methods used for chemical analysis 
have increased accuracy, as with the change from 
a persulfate digestion method to high tempera-
ture combustion in the case of dissolved organic 
carbon at the HBEF (Buso et al. 2000).

Uncertainty in precipitation chemistry was 
greater than the uncertainty in precipitation 
volume, even though precipitation chemistry is 
more spatially homogeneous at the HBEF (Buso 
et al. 2000, Likens et al. 2002). The low uncertain-
ty in precipitation volume is largely the result of 
the higher spatial density of precipitation gages 
for volume compared to chemistry collectors. 
Multiple standard precipitation gages (five in W5 
and three in W6) in relatively close proximity are 
used to estimate precipitation volume, and two 
of these standard precipitation gages (RG6 and 
10) have co-located recording precipitation gag-
es. Thus, the quantity and quality of precipitation 
gage data used to fill gaps in precipitation volume 
results in low uncertainty in gap-filled estimates. 
Additionally, the records from these precipitation 
gages contain few gaps so imputation is rarely 
required. The density of precipitation gages for 
volume also affects the uncertainty associated 
with the precipitation interpolation method used. 
The uncertainty due to precipitation interpolation 
method selection was small (< 0.4% of the total), 
primarily because the precipitation gage network 
is spatially dense. Greater uncertainty resulted 
from interpolation methods in areas distant from 
precipitation gages.

In addition to uncertainty associated with 
the precipitation gage network, the individual 
precipitation gages can over- or underestimate 
precipitation volume, which is a source of mea-
surement error. Precipitation gages typically 
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underestimate precipitation volume, causing a 
systematic bias (Yang et al. 1998). Undercatch is 
mainly caused by precipitation blowing horizon-
tally over the orifice of the gage and is therefore 
more of a problem for snowfall than for rain. As 
expected, the estimated average undercatch for 
snow in this study (1.8%) was greater than the 
undercatch for rain (1.2%) and had a broader 
distribution (Fig. 3b). As undercatch is primarily 
caused by wind, these values for forested regions 
of the northeastern United States are much lower 
than for more open, windier and colder locations 
where precipitation gages may underestimate 
water volume by as much as 50% (see Yang et al. 
2005, Sieck et al. 2007).

Uncertainty in stream water flux
Unlike precipitation flux, which is calculated 

from measurements made at multiple locations 
throughout a watershed, stream water flux is 
determined from measurements made at the 
point along a stream that defines the water-
shed. Consequently, uncertainty due to spatial 
variability is not an issue with stream fluxes 
as it is with precipitation fluxes. Instead, un-
certainty in estimating stream export derives 
primarily from temporal variability. Stream 
stage height is measured continuously, whereas 
samples for stream chemistry are collected at 
points in time, requiring some form of inter-
polation for calculating fluxes. Methods of 
interpolation range from simple calculations 
based on the mean of surrounding values, to 
more complex approaches that utilize concen-
tration–discharge relationships (e.g., Johnson 
et  al. 1969, Cohn et  al. 1992, Aulenbach and 
Hooper 2006). Uncertainty due to the selection 
of stream flux calculation method in this study 
was relatively low (4.6% in W5 and 2.7% in 
W6), indicating that both methods (average 
and linear interpolation) produce similar results. 
Stream-flow based flux-calculation methods 
may be superior in cases where there is a 
strong concentration–discharge relationship 
(Aulenbach et  al. 2016), but Ca concentrations 
at the HBEF are fairly constant and not well 
predicted by discharge (Likens 2013). The dif-
ference between regression-based and period-
weighted approaches is important for solutes 
that have a strong relationship with discharge, 
leading to greater model selection uncertainty 

(Aulenbach et  al. 2016). We should also note 
that we have not attempted here to quantify 
the uncertainty incurred by using a particular 
model, as the period-weighted “models” we 
used do not allow for comparison of predicted 
and observed values.

Gaps in stream runoff are one of the largest 
sources of uncertainty. By analyzing past records, 
we determined that most of the gaps were caused 
by organic debris in the v-notch weir and mal-
functioning chart recorders. To reduce gaps in 
stream runoff due to debris, technicians now in-
stall floating barriers in the ponding basin during 
the growing season to keep the v-notch clear of 
floating leaves and twigs that cause debris dams. 
Improvements in the instruments used to mea-
sure stream flow can also reduce gaps in stream 
runoff. The chart recorders that have been in use 
since the inception of the Hubbard Brook Experi-
mental Forest in 1955 were recently replaced with 
shaft encoders connected to dataloggers, which 
produce fewer gaps in stream runoff, largely be-
cause the digital clocks are more reliable.

The uncertainty in stream runoff can also be 
reduced with an improved estimate of water-
shed area, as it is used to normalize discharge. 
The two watershed delineation methods used in 
this study were ground survey and automated 
mapping with a 1-m resolution digital elevation 
model. Ground survey was the best available 
method for delineating watersheds at the time 
they were established. Automated delineation 
with a LIDAR-based digital elevation model is a 
newer, alternative method, but it is not clear if 
it is better than the ground survey. These meth-
ods were selected for the uncertainty analysis 
because they are the best currently available. In-
cluding additional methods that are known to be 
worse would incorrectly inflate the uncertainty. 
Ground survey and LIDAR are based on sur-
face topography, which may not reflect the true 
hydrological divides that are belowground and 
can change with groundwater depth. Therefore, 
the uncertainty due to watershed area may be 
greater than what is reported here; however, im-
proved estimates are not yet available. Advances 
in measurement methodologies, especially those 
that characterize belowground topography, such 
as ground penetrating radar, may lead to better 
future estimates of true hydrologic watershed 
area.
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Uncertainty analysis considerations
The list of sources of uncertainty in this 

study was not exhaustive, and other sources 
have been identified, and in some cases quan-
tified, in the literature (e.g., Harmel et  al. 
2006, Rode and Suhr 2007, McMillan et  al. 
2012). We were unable to quantify some 
sources of uncertainty due to lack of data 
(e.g., water leaking around a weir), and other 
sources contribute little to the flux estimates 
and are therefore probably not very important 
to include (e.g., wetting loss, which refers to 
precipitation that evaporates from the inner 
walls of the precipitation gage [Yang et  al. 
1998]). When all the sources of uncertainty 
considered were combined in a Monte Carlo 
framework, our calculations suggest that the 
resultant overall uncertainty in the estimates 
of the net hydrologic flux of Ca at the HBEF 
is quite small (5.1% of the total net hydrologic 
flux for W5 and 6.9% for W6). Including ad-
ditional sources in the Monte Carlo analysis 
would increase the estimates of uncertainty; 
we hope to make measurements to estimate 
uncertainty in stage-discharge relationships at 
high flow.

Uncertainty in net hydrologic flux is likely to 
be higher for other solutes and other sites. Low 
uncertainty at the HBEF results in part from the 
intensity of monitoring, which from the onset 
was designed to reduce uncertainty. Quality 
control in laboratory analyses is especially good 
for Ca at the HBEF, with other solutes having 
uncertainties two or three times higher (Yanai 
et al. 2015). Much higher uncertainties, in some 
cases exceeding 100%, have been reported for 
other small watershed studies, which may be 
due to factors such as the solutes evaluated, 
high flow conditions, and the method of un-
certainty analysis, which used the “maximum” 
values of the component errors (Harmel et  al. 
2009).

Uncertainty analysis is an imperfect science 
and there are many different ways to estimate 
uncertainty. In this example, we used a Monte 
Carlo approach that involves repeated random 
sampling to obtain results. Alternatively, un-
certainty can be calculated statistically by com-
bining the variances of each variable used in 
the calculation of the net hydrologic flux. One 
of the advantages of the Monte Carlo method is 

that, unlike the analytical approach, it does not 
require assumptions about the nature of the dis-
tributions. In this study, we sampled from the 
actual distributions (Fig. 3). One of the criticisms 
of Monte Carlo error propagation is that it can 
be computationally burdensome, but that is be-
coming less of an issue as computing resources 
improve. More sophisticated approaches to un-
certainty analysis, such as Bayesian modeling, 
may be warranted when the added complexity 
improves results.

Variation in approaches to uncertainty analy-
sis makes comparisons among studies difficult. 
Different sources of uncertainty are addressed 
in different studies, and different methods of 
error propagation are used. For this reason, it is 
important to explain clearly what sources were 
included in an analysis and how the uncertain-
ty was calculated. Almost any estimate of un-
certainty is better than none, even though every 
estimate is imperfect. Quantifying uncertainty is 
essential for evaluating confidence in results and 
identifying areas for improvement and should be 
a goal for continuous improvement in ecosystem 
studies.
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