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ABSTRACT
The influence of nutrient availability on transpiration is not well understood, in spite of
the importance of transpiration to forest water budgets. Soil nutrients have the potential
to affect tree water use through indirect effects on leaf area or stomatal conductance.
For example, following addition of calcium silicate to a watershed at Hubbard Brook,
in New Hampshire, streamflow was reduced for 3 years, which was attributed to a
25% increase in evapotranspiration associated with increased foliar production. The
first objective of this study was to quantify the effect of nutrient availability on sap flux
density in a nitrogen, phosphorus, and calcium addition experiment inNewHampshire
in which tree diameter growth, foliar chemistry, and soil nutrient availability had
responded to treatments. We measured sap flux density in American beech (Fagus
grandifolia, Ehr.), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.),
white birch (Betula papyrifera Marsh.), or yellow birch (Betula alleghaniensis Britton.)
trees, over five years of experiments in five stands distributed across three sites. In 2018,
3 years after a calcium silicate addition, sap flux density averaged 36% higher in trees
in the treatment than the control plot, but this effect was not very significant (p =
0.07). Our second objective was to determine whether this failure to detect effects with
greater statistical confidence was due to small effect sizes or high variability among
trees. We found that tree-to-tree variability was high, with coefficients of variation
averaging 39% within treatment plots. Depending on the species and year of the study,
the minimum difference in sap flux density detectable with our observed variability
ranged from 46% to 352%, for a simple ANOVA. We analyzed other studies reported
in the literature that compared tree water use among species or treatments and found
detectable differences ranging from 16% to 78%. Future sap flux density studies could
benefit from power analyses to guide sampling intensity. Including pretreatment data,
in the case of manipulative studies, would also increase statistical power.
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INTRODUCTION
Transpiration is affected by vegetation type and coverage as well as environmental variables
such as soil water availability and relative humidity (Aber & Federer, 1992; Foley et al., 2000;
Kite, 1998). Deciduous and evergreen forest types differ in annual water use due to the
length of the growing season (Daley et al., 2007) and tree species differ in sensitivity to
drought stress (Coble et al., 2017; Gu et al., 2015). In addition, the availability of nitrogen
(N), phosphorus (P), calcium (Ca), and silica may regulate transpiration rates (Cramer,
Hoffmann & Verboom, 2008; Ma, 2004; Matimati, Verboom & Cramer, 2014), due to the
role of these elements in stomatal opening (Laanemets et al., 2013; Lautner et al., 2007), leaf
size (Wilkinson, Bacon & Davies, 2007), canopy reflectance (Sullivan et al., 2013) and root
growth (Wright et al., 2011;Wurzburger & Wright, 2015).

Northern hardwood forests are poorly adapted to water stress due to the abundance of
water in this region (Pederson et al., 2014). Models predict that the northeastern USA will
experience more severe dry periods in the context of overall wetter conditions in the near
future due to climate change (Hayhoe et al., 2008). Other studies have suggested that water
limitation could become more important with intensifying summer droughts (Brzostek
et al., 2014). Because of these projections it is increasingly important to understand the
controls on water use in northern hardwood species. The effects of nutrient availability on
water use are not currently represented in forest hydrology models because they are poorly
understood.

There have been conflicting reports on the effects of nutrient availability on tree water
use. An increase in sap flux density has been observed with the addition of multiple element
fertilizers in Norway spruce in northern Sweden (Phillips et al., 2001) and in eucalyptus
forests in Hawaii (Hubbard et al., 2004). Nitrogen addition reduced evapotranspiration
rates in loblolly pine in North Carolina (Ward et al., 2018). Calcium additions (lime and
gypsum) increased transpiration in central Amazonia (Da Silva, Goncalves & Feldpausch,
2008). Calcium silicate additions may have increased sap flow at Hubbard Brook in New
Hampshire, based on an observation of decreased stream flow for 3 years, after which
stream flow returned to pretreatment rates (Green et al., 2013).

In 13 stands distributed across three sites in the White Mountains of New Hampshire, N
and P have been added in full factorial combination since 2011 to study Multiple Element
Limitation in Northern Hardwood Ecosystems (MELNHE). By 2013, foliar nutrients had
responded to treatment (Wild & Yanai, 2015). Relative basal area growth across all 13
stands responded to P addition but not to N addition by 2015, based on the average tree
(Goswami et al., 2018), but the dominant trees grew more in response to N addition (Hong
et al., 2022). The MELNHE study design included calcium silicate additions in seven of the
stands to test the hypothesis that an increase in tree water use explained the reduction in
runoff following the earlier calcium silicate addition at Hubbard Brook (Green et al., 2013).

One goal of this study was to determine the role of water use by trees in reducing
runoff after a calcium silicate addition by measuring sap flux density of five common
northern hardwood species in plots treated with calcium silicate at the same rate as the
whole-watershed addition at Hubbard Brook (Green et al., 2013). We also investigated the
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importance of other nutrients to tree water use by quantifying sap flux density in plots
receiving additions of N and P. We predicted that sap flux density would increase with
the addition of a limiting nutrient, because nutrient availability is a driver of productivity
and photosynthesis. Additionally, we calculated minimum detectable differences in this
study and in previously published studies to determine whether failures to detect treatment
effects were due to small effect sizes or to high variability among trees. Power analyses of
studies such as these can help to guide future research plans.

METHODS
Site description
We studied tree water use in five naturally regenerated hardwood stands located in three
forested sites in the White Mountain National Forest, New Hampshire, USA: two in each
of the Bartlett Experimental Forest (44◦02′N, 71◦17′W) and Hubbard Brook Experimental
Forest (43◦93′N, 71◦73′W), and one in Jeffers Brook (44◦03′N, 71◦88′W; Table 1). The
climate is humid continental, with a mean annual temperature of 4.4 ◦C and precipitation
of 1400 mm (Bailey et al., 2003; Smith & Martin, 2001). Soils are moderately well to well
drained (Schaetzl et al., 2009), coarse-loamy Spodosols and Inceptisols developed in glacial
drift derived from granitic and metamorphic silicate rocks (Vadeboncoeur et al., 2012;
Vadeboncoeur et al., 2014). Dominant tree species are American beech (Fagus grandifolia
Ehrh.), sugar maple (Acer saccharum Marsh.), and yellow birch (Betula alleghaniensis
Britton) in mature stands with the inclusion of white birch (B. papyrifera Marsh.) and red
maple (A. rubrum L.) in successional stands (Fatemi et al., 2012; Naples & Fisk, 2010). Tree
height ranged from 9.9 m to 21.3 m in the successional stands and 10.3 m to 33.2 m in the
mature stands.

These five stands are part of a study of Multiple Element Limitation in Northern
Hardwood Ecosystems (Table 1; Hong et al., 2021). Within each of these stands there are
four plots measuring 50 × 50 m, except for Hubbard Brook Successional, which has 30 ×
30 m plots. These plots have been treated since 2011 with 30 kg ha−1yr−1 of N as NH4NO3,
10 kg ha−1yr−1 of phosphorus as NaH2PO3, both N and P, or were left untreated. A
fifth plot in these stands received a one-time application of 1,150 ha−1 of calcium silicate
(wollastonite) in 2011, or in 2015 for Hubbard Brook Successional.

Field methods
Sap flux density measurements were taken during the summers of 2013, 2014, 2015, 2017,
and 2018 for periods of 7 to 48 days. In 2013 and 2014, we examined three tree species in
three mature stands in plots that received calcium silicate and control treatments (six plots
total; Table 2). In 2015, our goal was to assess the effects of N and P treatments (four plots)
on one species in one successional stand (Table 3). During those years, data were sparse
due to poor contact between the probes and the sapwood, but this problem was corrected
in 2017. In 2017, one species in a mature stand in Bartlett was examined, and in 2018, three
species were examined in the Hubbard Brook Successional stand. The number of trees of
each species monitored in each plot varied by stand and year (Tables 2 and 3).
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Table 1 Site descriptions of the five forested stands studied in theWhite Mountains of NewHampshire.Date of stand initiation was determined
from the last clearcut or heavy harvest event. Quadratic mean diameters and basal areas are based on trees with diameters greater than 2 cm. Stem
density is calculated for trees greater than 10 cm in diameter.

Stand Date of
stand initiation

Elevation
(m)

Slope
(%)

Aspect Quadratic mean
diameter (cm)

Stem density
(count/ha)

Basal area
(m2/ha)

Bartlett Successional (C6) 1975 460 13–20 NNW 23.1 1,487 29.5
Bartlett Mature (C8) ∼1883 330 5–35 NE 41.2 589 41.0
Jeffers Brook Mature ∼1900 730 30–40 WNW 35.4 680 35.9
Hubbard Brook Successional 1971 500 10–25 S 23.6 2749 15.4
Hubbard Brook Mature ∼1910 500 25–35 S 36.5 538 29.5

Table 2 Studies of sap flux density in response to calcium silicate addition showing the dates, number of years since treatment and the number
of trees of each species used in analysis in each treatment plot. The calcium silicate treatment was applied in 2011, except that in Hubbard Brook
Successional it was applied in 2015.

Dates
(# of years post treatment)

Stand Species Number of trees in treatment

Control Calcium Silicate

July 19, 2013 (2) Jeffers Brook Mature Sugar maple 4 2
Yellow birch 3 1

August 5, 2013 (2) Bartlett Mature (C8) American beech 2 3
Sugar maple 3 3

August 5, 2013 (2) Hubbard Brook Mature American beech 2 2
Sugar maple 2 2
Yellow birch 2 1

June 22–24, 2014 (3) Bartlett Mature (C8) Sugar maple 3 2
July 1, 2014 (3) Hubbard Brook Mature American beech 3 2

Sugar maple 3 2
Yellow birch 3 1

August 1, 2 and 5, 2014 (3) Jeffers Brook Mature Sugar maple 4 4
Yellow birch 3 5

July 22 and 23, 2015 (4) Bartlett Successional (C6) White birch 4 4
July 31 and August 1, 2017 (6) Bartlett Mature (C8) Sugar maple 5 4
July 19–21, 2018 (3) Hubbard Brook Successional Red maple 3 3

Sugar maple 3 3
White birch 3 3

Sap flux density measurements were made using the thermal dissipation method
(Granier, 1987). This technique used a pair of stainless-steel probes 20 mm long and 1.8
mm in diameter. One probe was wrappedwith copper constantan thermocouple wire (Type
T) and generated a constant flow of heat (0.2 W). The other was a reference probe that
received no heat. Both probes were coated with heat-conducting paste and inserted into
aluminum sleeves 20 mm long and 2.4 mm in diameter for protection during insertion into
the tree. The thermal dissipation method may underestimate sap flux density depending
on species, portion of probe in the heartwood, and wood type (Flo et al., 2019; Peters et al.,
2018), but a consistent bias would not impair our ability to detect treatment effects. We
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Table 3 Studies of sap flux density in response to nitrogen and phosphorus addition showing the date of the study, the number of annual nu-
trient applications prior to each study, and the number of trees of each species used in analysis in each treatment plot.

Dates
(# of years of treatment)

Stand Species Number of trees in treatment

Control Nitrogen Phosphorus Nitrogen
+ Phosphorus

August 1, 2015 (4) Bartlett Successional (C6) White birch 4 4 5 4
July 31 and August 1, 2017 (6) Bartlett Mature (C8) Sugar maple 5 6 6 5
July 19–21, 2018 (7) Hubbard Brook Successional Red maple 3 3 3 3

Sugar maple 3 3 3 3
White birch 3 3 3 3

tested for treatment differences in sap flux in the youngest xylem; reporting sap flow per
tree or scaling to the stand level would require information on sapwood depth, which was
not measured.

We selected trees with full canopies, without noticeable dead branches or cankers. A
total of 202 trees were instrumented, of which 174 produced usable data. The number of
trees instrumented per species per plot ranged from 1 to 6, averaging 3.2 ± 1.1 (standard
deviation; Tables 2 and 3). Before probe installation, ∼4 cm2 of bark was removed to the
cambium at a height of 1.37 m for the reference probe and 1.47 m for the heated probe on
the south-facing side of the tree. After the bark was removed, a hole 21 mm deep and 2.8
mm in diameter was drilled in the middle of the exposed cambium for each probe.

Once probes were inserted, they were protected from precipitation with a plastic cover
sealed with acid-free silicone caulk. Closed-cell reflective polyethylene insulation was
stapled over the plastic cover to shield solar radiation. The probes were connected to cables
no longer than 20m tominimize loss of power from cable resistance, trampling by humans,
and disturbance by wildlife.

Temperature differences between the heated and reference probes in each plot were
recorded every 15 min as an average of thirty 30-second readings on a multiplexor and
stored on a multichannel data logger (Campbell Scientific CR800). To power the data
logger and multiplexer, the first study, in 2013, used two 12 V deep-cycle marine batteries
per plot charged by two solar panels; later studies used three batteries linked together.

Gaps in usable datawere usually due to cable disturbances or improper probe installation;
in the first year solar panels proved insufficient to maintain their charge, and data were
very spotty. The number of days of usable data was also improved by more frequent
maintenance of wire connections, probes, and batteries.

Data processing
Temperature differences were converted into sap flux density using BaseLiner (version
3.0.10, developed by Ram Oren, Duke University; Oishi, Hawthorne & Oren, 2016).
BaseLiner used the following equation to calculate sap flux density (g H2Om−2 of sapwood
day−1):

Sap Flux Density= 119×
(
1Tmax−1T

1T

)1.23

(1)
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where the constants, 119 (Watts ◦C−1) and 1.23, were derived using the quantity of heat
applied to the probes (Granier, 1985; Lu, Urban & Ping, 2004).1Tmax (◦C) is the ‘‘baseline’’
value that was manually chosen as the maximum temperature difference between the two
probes from 10:00 PM to 4:30 AM EDT.1Tmax was set for each day for each tree, defining
nocturnal flux as zero, which accounted for any thermal drift that may have occurred from
day to day. 1T (◦C) is the temperature difference between the probes at each 15-minute
observation period. We used the same equation for all trees because species-specific
coefficients were available for only one of the five species studied (Peters et al., 2021).

The experimental unit was a treatment plot, and the observational unit was a tree.
Because of the many barriers to continuous collection of high-quality data, selecting data
for analysis was an important step. Twenty-eight trees (not shown in Tables 2 and 3) never
produced usable data due to faulty probe installation in the early years of the study. For
each tree, we used the average daily sap flux density calculated from summed 15-minute
averages for each day. Days used in analyses were mostly dry and sunny (PAR > 800
W/m2 for at least 7 hours). Days were excluded from analyses if sap flux values did not
follow the characteristic diurnal curve or if the majority of the probes in the stand were
not functioning simultaneously (Tables 2 and 3).

Data analysis
The five studies of calcium silicate addition were analyzed in ANOVA Type III sum of
squares with average daily sap flux density as the response variable and treatment, species,
and the number of years post treatment as categorical fixed effects. The post-treatment
years were nested within two categories: ‘‘early’’ and ‘‘late’’, based on the finding that
evapotranspiration increased for 3 years after a calcium silicate addition and then returned
to normal (Green et al., 2013). Treatments were nested within stands and stands were
treated as a random effect. The assumption of normality of residuals was met through a
logarithmic transformation of sap flux density. We tested a model that included additional
interaction terms, but the Akaike’s Information Criterion (AIC), 44.4, was higher than
that of the simpler model (1.48) (Table S1). Data from 2018 were analyzed independently
using the same model without time since treatment. For this analysis, the assumption of
normality of residuals was met without transformation.

Our study design included all combinations of N and P addition, but no combinations
of calcium with N or P. To take advantage of the factorial N × P addition, we analyzed
the N and P treatments separately from the calcium silicate addition treatments. Thus,
the three studies in N and P addition plots were analyzed together in a randomized full
factorial ANOVAwith average daily sap flux density as the response variable and species and
stand as fixed effects. Three stands were studied in three different years, which precluded
distinguishing the effects of stands from the effects of the year of measurement. A model
including the interaction of species and treatment was not an improvement, according
to the AIC (97 compared to 86) (Table S2). Normality of the residuals was achieved by
logarithmic transformation of sap flux density. Additionally, the year with the best data
quality (2018) was analyzed independently using the same model with the exception of
excluding stand as a fixed effect. For this analysis, the assumption of normality of residuals
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was met without transformation. We tested whether nutrient additions (Ca and N × P)
affected sap flux density at any time of day, using trees from 2017, which had the largest
sample size of a single species (sugar maple). These effects were tested for each hour over
three days using ratios of instantaneous sap flux density to the average for the day. There
were no significant treatment effects when a Bonferroni correction was applied (p ≥ 0.32).
Therefore, only results using daily average sap flux densities were reported.

All analyses were conducted using the ‘‘lme4’’ package in R version 3.5.2 (R Core Team,
2018).

Our second objective was approached by calculating coefficients of variation (CV)
and minimum detectable differences for our study and published studies. Coefficients of
variation across trees were calculated for each treatment by stand and year studied using
the average daily sap flux density per tree. Coefficients of variation across treatments were
also calculated for each stand and year studied for comparison to within-treatment CV’s.
Published studies were chosen for minimum detectable difference analyses from a search
using the keywords ‘‘sap flux’’, ‘‘sap flow’’, ‘‘trees’’, and ‘‘treatment addition’’, and were
selected if they reported sample sizes, mean sap flux density, and standard deviation or
error for each treatment or species of interest.

The minimum detectable difference in sap flux density among treatments or species
in our study and for published studies was calculated using the following equation (Zar,
1984):

Minimum Detectable Difference=

√
2kS2φ2

n
(2)

where k is the number of treatments, S2 is the sample variance, φ2 is the non-centrality
parameter dependent on β and α, and n is the sample size. Power (1- β) was set at 0.8 and
α at 0.05. For an ANOVA, S2 is the mean squared error. This equation was rearranged to
calculate the sample size needed to detect a 20% and 50% difference using data from 2017
and 2018. To estimate the minimum detectable difference from published studies, S2 was
the average of the variances across treatments (Eq. (2)).

RESULTS
Characteristics of sap flux density
Sap flux density peaked between 12:30 and 3:00 PM and was lowest between 2:30 and 4:30
AM Eastern Daylight Savings Time. Trees varied consistently in sap flux density across days
(Fig. 1).

The first year, 2013, had the highest CV’s among the five studies (Table 4). Coefficients
of variation across trees within plots for each year ranged from 9% to 136% and averaged
38% within treatment plots across trees. CV’s across treatments averaged 17% with a range
of 8% in Bartlett Mature in 2017 to 49% in Jeffers Brook Mature in 2013. Average CV’s
within treatment plots were higher than CV’s across treatments.
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Figure 1 An example of sap flux density in nine trees continuously measured from July 19 to 21, 2018.
Each color represents one tree in the control plot in the Hubbard Brook Successional stand.

Full-size DOI: 10.7717/peerj.14410/fig-1

Effects of nutrient additions
In 2018, the year with the best data quality, the effect of Ca addition was a marginally
significant increase of 36% (p = 0.07). With all years included, the effect of calcium
silicate addition on sap flux density was not consistent (p = 0.30 for the main effect of
treatment). Sap flux density did not differ consistently between ‘‘early’’ (2- and 3-years
post treatment) and ‘‘late’’ (4 and 6 years post treatment) years (p = 0.26) nor was there a
difference in response to a calcium silicate addition as the number of years post treatment
increased (p= 0.88 for the interaction of treatment and time period). The five species were
indistinguishable in sap flux density (p = 0.42; Fig. 2; Table 5).

The effects of N and P on sap flux density were studied in white birch in Bartlett
Successional in 2015, sugar maple in Bartlett Mature in 2017, and red maple, sugar maple,
and white birch in Hubbard Brook Successional in 2018 (Table 3). Sap flux density
differed across these three studies (p< 0.01), which could be because sites were different or
because conditions differed during the measurement periods among the three years. Sap
flux density in the Hubbard Brook Successional stand, measured in 2018 after 7 years of
fertilization, was 63% higher than in Bartlett Successional measured in 2015 and Bartlett
Mature measured in 2017. There was, however, no detectable difference in sap flux density
due to the main effects of N (p = 0.50) or P (p = 0.95) or their interaction (p = 0.33).
Species were also indistinguishable in sap flux density (p = 0.58; Figs. 3 and 4; Table 6).

In 2018, the best year for data quality, there was still not a consistent effect of N (p= 0.26)
or P (p = 0.10) addition on sap flux density. Trees in the N and P plots had 14 and 20%
higher sap flux densities, respectively, than those in the controls but trees in the NP plot
did not, resulting in a weak N × P treatment interaction (p = 0.06). This is apparent in
Figs. 3 and 4, where the filled blue symbols, showing the plots receiving the element not
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Table 4 Coefficient of variation (CV) of sap flux for each treatment plot in each study year. CV’s were
calculated as the standard deviation of sap flux for all the trees in a treatment plot divided by the average
for that plot.

Year Stand Treatment CV (%)

2013 Bartlett Mature (C8) Control 136
Calcium 58

Hubbard Brook Mature Control 36
Calcium 32

Jeffers Brook Mature Control 34
Calcium 32

2014 Bartlett Mature (C8) Control 36
Calcium 34

Hubbard Brook Mature Control 40
Calcium 45

Jeffers Brook Mature Control 16
Calcium 35

2015 Bartlett Successional (C6) Control 14
Nitrogen 47
Phosphorus 30
Nitrogen+ Phosphorus 14
Calcium 9

2017 Bartlett Mature (C8) Control 31
Nitrogen 29
Phosphorus 21
Nitrogen+ Phosphorus 67
Calcium 44

2018 Hubbard Brook Successional Control 30
Nitrogen 36
Phosphorus 47
Nitrogen+ Phosphorus 37
Calcium 31

depicted on the x and y axes, fall below the open symbols. However, the interaction is based
on only one plot receiving both treatments and is thus not very convincing: in this case,
an environmental factor that differentially affected water use in one treatment plot would
explain the observed ‘‘interaction’’ of N and P, whereby the NP plot had lower values than
predicted by the main effects of N and P, which were positive, if not significant. The p
value of 0.10 for the main effect of P seems possibly worthy of attention, but both of the
two main effects became less significant when the interaction term was excluded from the
model (p= 0.66 for P), again showing that the analysis based on only one stand is not very
robust.

Power analyses
The lack of significant treatment effects does not necessarily mean that effect sizes were
small (Amrhein, Greenland & McShane, 2019); rather, the minimum detectable differences
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Figure 2 Response of sap flux to calcium silicate treatment. Bars represent standard errors across trees.
Symbols represent species and colors represent years with associated stands. The 1:1 line represents equal
flow rates in control and Ca-treated plots.

Full-size DOI: 10.7717/peerj.14410/fig-2

Table 5 ANOVA table showing Type III sum of squares for calcium silicate addition studies. The re-
sponse variable is sap flux density, with calcium silicate treatment, species, and ‘‘Early’’ vs ‘‘Late’’ as cate-
gorical fixed effects. ‘‘Early’’ measurements were taken 2 or 3 years after the calcium silicate addition and
‘‘Late’’ were taken 4 or 6 years after the addition (Table 2).

Df Numerator Df Denominator F Value Pr (>F)

‘‘Early’’ vs ‘‘Late’’ 1 333.77 1.2932 0.26
Treatment 1 6.14 1.2764 0.30
‘‘Early’’ vs ‘‘Late× Treatment 1 8.45 0.0227 0.88
Species 4 20.27 1.0287 0.42

for a simple ANOVA were large, ranging from 50 to 1582 g m−2 day−1 (50% to 352% of
the mean) for Ca additions and from 779 to 1209 g m−2 day−1 (46% to 134%) for N ×
P additions, depending on the year (Fig. 5). Improvements in methods and larger sample
sizes resulted in smaller detectable differences over time, associated with lower variability
from tree to tree (Table 4). Even in 2018, where detectable differences were smallest, the
variation from tree to tree within a plot was large (Fig. 6).

The average number of trees monitored per plot increased over time from two in 2013
to nine in 2018. Even with this increase in sample size, we were still unable to detect a
treatment effect. We calculated the number of trees needed to detect a given effect size,
using the studies with the best data quality, and assuming there were no differences among

Rice et al. (2022), PeerJ, DOI 10.7717/peerj.14410 10/22

https://peerj.com
https://doi.org/10.7717/peerj.14410/fig-2
http://dx.doi.org/10.7717/peerj.14410


500

1000

1500

2000

2500

500 1000 1500 2000 2500

Sap Flux with No N Addition (g m−2 day−1)

S
ap

 F
lu

x 
w

ith
 N

 A
dd

iti
on

 (g
 m

−2
 d

ay
−1

)

Species

red maple (Con & N)
sugar maple (Con & N)
white birch (Con & N)
red maple (P & NP)
sugar maple (P & NP)
white birch (P & NP)

Year_Stand

2015_Bartlett Successional
2017_Bartlett Mature
2018_Hubbard Brook Successional

Figure 3 Responses of sap flux to nitrogen treatments. Bars represent the standard error across trees.
Species are represented by symbols; stands with the year studied are represented by colors. The 1:1 line
represents equal sap flux rates in plots that received nitrogen additions (N and NP) and plots without ni-
trogen additions (Control and P).

Full-size DOI: 10.7717/peerj.14410/fig-3

species. To detect a 20% treatment effect on sap flux with 95% confidence would have
required 119 trees in each treatment plot in 2017 or 48 trees in each plot in 2018. The
number of trees needed to detect a 50% difference would be 19 for 2017 and 9 for 2018,
given the variance in sap flux density we measured in those years.

Minimum detectable differences for published studies
Effect sizes reported in eight previously published studies of tree water use ranged from 8%
to 243% (Table 7). The largest reported effect size was a 90% increase in sap flux density
with the addition of N (80 kg ha−1 yr−1) in loblolly pine (Pinus taeda) seedlings (Samuelson
et al., 2008). A 43% increase was reported with the addition of macro and micronutrients
to a Eucalyptus saligna plantation in Hawaii (Hubbard et al., 2004), and a 35% increase was
detected in a study involving the addition of P (50 kg ha−1 of P2O5

−1) and Ca (2 t ha−1 of
CaCO3) on Vismia japurensis, Bellucia grossularioides, and Laetia procera in Amazonia (Da
Silva, Goncalves & Feldpausch, 2008).

Minimum detectable differences ranged from 16% to 75% in temperate forests and 52%
to 74% in tropical and subtropical forests (Table 7). Two studies of temperate deciduous
forest species had lower calculated detectable differences than ours. A study of eight tree
species in four forest types in Wisconsin had a detectable difference in sap flux density of
only 16% with a sample size of 8 per species, due to low variability among trees (Ewers et
al., 2002). Another study in the same region used more trees from a larger area, resulting
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Figure 4 Responses of sap flux to phosphorus treatments. Bars represent the standard error across trees.
Species are represented by symbols; stands with the year studied are represented by colors. The 1:1 line
represents equal sap flux rates in plots that received phosphorus additions (P and NP) and plots without
phosphorus additions (Control and N).
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Table 6 ANOVA table showing Type III sum of squares for N and P addition studies. The response
variable is average daily sap flux density and the listed explanatory variables are categorical fixed effects.
The three stands were studied in three different years (Table 3).

Sum of squares Df F Value Pr (>F)

N Treatment 0.071 1 0.460 0.50
P Treatment 0.001 1 0.004 0.95
N× P Interaction 0.146 1 0.944 0.33
Species 0.168 2 0.543 0.58
Stand 4.481 2 14.478 <0.001
Error 10.987 71

in higher variability and slightly higher detectable differences (Loranty et al., 2008). Some
studies had much higher effect sizes than ours (Kunert, Schwendenmann & Hölscher, 2010;
Nagler, Glenn & Thompson, 2003; Samuelson et al., 2008) and thus were able to detect them
with statistical confidence although their power to detect a difference was not better.
Publication of insignificant findings is rare (Møller & Jennions, 2001); one earlier study
took place in two MELNHE stands (including one that we studied, Bartlett Mature) with
effect sizes well below detection, similar to ours (Hernandez-Hernandez, 2014).
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DISCUSSION
The initial impetus for this study was the surprising decrease in stream flow for three years
following a calcium silicate addition at Hubbard Brook, where tree water use was invoked
as a likely mechanism (Green et al., 2013). Unfortunately, even in 2018, the year with the
lowest tree-to-tree variability and the highest replication, our statistical power was too low
to detect a response of sap flux density to calcium addition smaller than 50% with an α of
0.05 (Fig. 5); we obtained a p value of 0.07 for an average increase in sap flux density of
36%, which is larger than the 25% increase in water use postulated by Green et al. (2013).
Thus, we lack the statistical confidence to either support or contradict the explanation
that increased sap flux density accounted for the decline in runoff in the earlier calcium
addition experiment.

There are other possible mechanisms for increased water use in response to nutrient
addition. In the MELNHE study, the relative basal area increment of the average tree
increased in response to P addition (Goswami et al., 2018), and larger trees grew more
in response to N addition (Hong et al., 2022). In the calcium silicate addition, trees grew
more than in the unfertilized control (Battles et al., 2014; Huggett et al., 2007). An increase
in diameter growth could result in increased sapwood area (Nilsson et al., 2021), which
could conduct water to a greater leaf area (Wang et al., 2012) without an increase in sap
flux density (Hubbard et al., 2004). It is also possible that nutrient availability affects the
length of the growing season (Escudero et al., 1992), which would affect annual water use
without affecting sap flux density.
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Figure 6 Diurnal sap flux density in the Hubbard Brook Successional stand on July 19, 2018. Times are
local daylight savings time. Each line represents an instrumented tree; there are 9 trees in each treatment
colored by species.

Full-size DOI: 10.7717/peerj.14410/fig-6

Other studies of sap flux density have reported statistically significant effects to treatment
additions, with effect sizes as low as 35% (Table 7). The difference detectable with our
factorial ANOVA comparingN and P additions is somewhat smaller than the 46% shown in
Fig. 5, because Eq. (1) describes power for a simple ANOVA. The benefit of factorial designs
is evidenced by two of the published studies we analyzed. The study involving combinations
of phosphate, lime, and gypsum additions (Da Silva, Goncalves & Feldpausch, 2008) was
able to detect a significant difference of 35%, whereas our calculated minimum detectable
difference for a simple ANOVA was 52%. Similarly, the full factorial study of irrigation
and N fertilization (Samuelson et al., 2008) reported a 90% increase with N fertilization
with a p-value of 0.01, which shows greater power than the detectable difference of 97%
calculated using Eq. (2) for a simple ANOVA with α = 0.05. Unfortunately, without a
power analysis for factorial designs, we cannot better quantify the effect size ruled out by
our findings in the N× P addition experiment. It remains possible that nutrient availability
has an ecologically important effect on sap flux.

Our studymight have benefitted from pretreatment measurements since sap flux density
varied consistently from tree to tree (Figs. 1 and 6). Pretreatment data, like factorial designs,
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Table 7 Studies of sap flux density or sap flow among species or following nutrient additions in deciduous and evergreen trees, listed from low-
est to highest minimum detectable difference.

Forest
type

Species or
treatment studied
(number of trees)

Effect size
and significance

Minimum
detectable
difference (%)

Source

Sap Flux Density
Temperate Deciduous
and Evergreen

Pinus resinosa (8)
Pinus banksiana (8)
Acer saccharum (8)
Populus tremuloides (8)
Abies balsamea (8)
Thuja occidentalis (8)
Abies balsamea (8)
Alnus regosa (8)

Species was signifi-
cant overall; pairwise
comparisons ranged
from 7.5 to 243%
(p< 0.05)

16 Ewers et al. (2002)

Temperate Deciduous
and Evergreen

Alnus incana (41)
Populus tremuloides (79)
Thuja occidentalis (9)

Not Reported 21–65 Loranty et al. (2008)

Temperate Evergreen
(Eucalyptus saligna)

Control (9)
Micro and
macronutrients (9)

43% increase with
fertilization (p=
0.04)

40 Hubbard et al. (2004)

Temperate Deciduous Control (9)
Nitrogen (9)
Phosphorus (9)
Nitrogen+
phosphorus (9)
Calcium (9)

14% increase with
N (p= 0.26); 20%
increase with P (0.10)
36% increase with
Ca treatment
(p= 0.07)

46 (N× P)
50 (Ca)

This study (2018
only)

Tropical Evergreen
(Vismia japurensis,
Bellucia grossulari-
oides, Laetia procera)

Control (9)
phosphate (9)
phosphate+ lime (9)
phosphate+ lime+
gypsum (9)

Phosphate+ lime+
gypsum treatment
was 35% higher than
phosphate+ lime
(p< 0.05)

52 Da Silva, Goncalves &
Feldpausch (2008)

Temperate Deciduous Quercus mongolica (5)
Tilia amurensis (5)
Ulmus davidiana (5)
Cornus controversa (3)
Acer mono (3)

No Significance
(p= 0.73)

52–75 Jung et al. (2011)

Tropical Deciduous Cedrela odorata (4)
Anacardium
excelsum (4)
Hura crepitans (4)
Luehea seemannii (4)
Tabebuia rosea (4)
Gmelina arborea (4)
Tectona grandis (4)
Acacia mangium (4)
Terminalia amazonia (4)

A. excelsoum, L.
seemannii and T.
amazonia were
113% higher
than C. odorata
and G. arborea
(p < 0.05)

61 Kunert, Schwenden-
mann & Hölscher
(2010)

Temperate Deciduous Control 7)
Nitrogen (9)
Phosphorus (9)
Nitrogen+ phosphorus
(9)

12% increase
with N and 12%
increase with P
(p> 0.05)

66 Hernandez-
Hernandez (2014)

(continued on next page)
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Table 7 (continued)

Forest
type

Species or
treatment studied
(number of trees)

Effect size
and significance

Minimum
detectable
difference (%)

Source

Sap Flow Rate
Subtropical Evergreen
(Pinus taeda)

Control (5)
Irrigated (5)
Nitrogen (5)
Irrigated+ Nitrogen (5)

90% increase with
N fertilization (p <
0.01)

74 Samuelson et al.
(2008)

Riparian Deciduous
(Desert)

Populus fremontii (6)
Salix gooddingii (6)
Tamarix ramosissima (6)

T. ramosissima
was 122% higher
than P. fremontii
and S. gooddingii
(p< 0.05)

78 Nagler, Glenn &
Thompson (2003)

can confer additional power. The only study we analyzed that collected pretreatment data
(Hubbard et al., 2004) reported an effect size of 43% with p= 0.04, which seems consistent
with the minimum detectable difference we calculated (40% with α= 0.05). Thus, it seems
unlikely that the pretreatment data were used in the statistical analysis.

In addition to including pre-treatment measurements, future sap flux density studies
could benefit from incorporating explanatory variables such as leaf area, canopy position,
and stomatal conductance, since these characteristics have important influences on sap
flux density (Green et al., 2013;Hubbard et al., 2004; Peters et al., 2021; Phillips et al., 2001).
Environmental variables such as soil moisture and light environmentmay also be of interest
since they influence sap flux density (Oren et al., 1998a; Oren et al., 1998b). Sapwood area
measurements not only allow for scaling up towhole-tree water use but alsomake it possible
to ensure that probes are within the sapwood. If probes are inserted into heartwood, which
may have occurred in our study, estimated sap flux measurements can be reduced up to
50% (Clearwater et al., 1999). Many of these variables likely contributed to the variation
we observed among trees.

CONCLUSION
This study aimed to assess the influence of soil nutrient availability on sap flux density
in northern hardwoods. Specifically, we sought to verify whether increased tree water use
could explain the observed reduction in runoff following a calcium silicate application
in an earlier study, and we tested for effects of N and P addition on sap flux density in
a long-term N by P factorial addition experiment. Unfortunately, poor statistical power
due to high tree-to-tree variability prevented detection of potentially important treatment
effects. Previous studies that reported significant differences had larger effect sizes; few had
sufficient statistical power to detect small differences. To improve the ability to detect a
treatment effect, future studies should instrument more trees to increase statistical power,
collect pretreatment data, when applicable, to control for tree-to-tree variability, and
include additional tree metrics such as leaf and sapwood areas.
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