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ABSTRACT
Long-term streamflow datasets inevitably include gaps, which must be filled to allow
estimates of runoff and ultimately catchment water budgets. Uncertainty introduced
by filling gaps in discharge records is rarely, if ever, reported. We characterized
the uncertainty due to streamflow gaps in a reference watershed at the Hubbard
Brook Experimental Forest (HBEF) from 1996 to 2009 by simulating artificial gaps
of varying duration and flow rate, with the objective of quantifying their contribution
to uncertainty in annual streamflow. Gaps were filled using an ensemble of regressions
relating discharge from nearby streams, and the predicted flow was compared to the
actual flow. Differences between the predicted and actual runoff increased with both
gap length and flow rate, averaging 2.8% of the runoff during the gap. At the HBEF, the
sum of gaps averaged 22 days per year, with the lowest and highest annual uncertainties
due to gaps ranging from 1.5 mm (95% confidence interval surrounding mean runoff)
to 21.1mm. As a percentage of annual runoff, uncertainty due to gap filling ranged from
0.2–2.1%, depending on the year. Uncertainty in annual runoff due to gaps was small
at the HBEF, where infilling models are based on multiple similar catchments in close
proximity to the catchment of interest. The method demonstrated here can be used to
quantify uncertainty due to gaps in any long-term streamflow data set, regardless of the
gap-filling model applied.

Subjects Ecosystem Science, Ecohydrology
Keywords Imputation error, Hydrologic uncertainty, Missing data, Watershed budgets

INTRODUCTION
Accurately estimating stream runoff is essential to water and nutrient budgets in watershed
studies, but long-term data sets inevitably contain gaps in their records. Missing or
unusable streamflow data occur due to planned maintenance, equipment failure, and other
disruption of stage measurements. For calculations requiring a continuous record, such
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as annual runoff and solute export, infilling data gaps with best estimates is necessary.
The use of infilled streamflow values adds uncertainty to runoff calculations, but this
uncertainty is rarely reported in the literature, despite its importance to hydrologic
budgets and estimates of solute export (Lloyd et al., 2016). It was recently demonstrated
that uncertainties in discharge contribute heavily to estimates of phosphorus export in
suspended solids (Krueger et al., 2009). Historically, streamflow gaps have often been filled
using statistical models that assume that the data conform to probability distributions (e.g.,
Dempster, Laird & Rubin, 1977; Simonovic, 1995; Rubin, 1996), allowing for the calculation
of parametric uncertainty estimates (e.g., prediction intervals). Increasingly, however,
non-parametric methods of prediction are being used to fill streamflow gaps (e.g., Zealand,
Burn & Simonovic, 1999; Khalil, Panu & Lennox, 2001; Mwale, Adeloye & Rustum, 2012).
These methods require estimating uncertainty using numerical techniques.

The contribution of gaps in streamflow data to uncertainty in runoff has been quantified
for national networks of gauged watersheds in Canada and the USA (Kiang et al., 2013;
Mishra & Coulibaly, 2010). Less is known about data gaps in small watershed studies,
though some evidence suggests the effects may be large enough to affect annual water
budgets (Campbell et al., 2016). In a recent survey hydrologists ranked infilling gaps in
the discharge record among the most important sources of uncertainty in streamflow
monitoring (Yanai, See & Campbell, 2018). Methods reported for infilling streamflow gaps
include manual inference (‘‘eyeballing it;’’Rees, 2008; Yanai et al., 2015), regression models
based on predictive variables (Beauchamp, Downing & Railsback, 1989; Elshorbagy, Panu &
Simonovic, 2000), process-based models (Beven, 2012; Gyau-Boakye & Schultz, 1994), and
artificial neural networks (Ilunga & Stephenson, 2005; Khalil, Panu & Lennox, 2001). To
date, studies addressing the issue of streamflow gaps have largely focused on comparing the
efficacy of various infilling models in larger rivers (e.g., Hamilton & Moore, 2012; Harvey,
Dixon & Hannaford, 2012), but few have attempted to quantify the uncertainty that these
modeled values introduce into runoff estimates (Campbell et al., 2016; Mwale, Adeloye &
Rustum, 2012).

In this paper, we describe the causes and duration of gaps in the discharge record for a
reference stream at the Hubbard Brook Experimental Forest for the period 1996–2009. We
demonstrate an approach to quantifying the uncertainty introduced by infilling data gaps
and describe the effects of gap length and flow rate on the uncertainty introduced.

METHODS
Study site and dataset
The Hubbard Brook Experimental Forest, New Hampshire, USA, contains six small
headwater catchments clustered on a south-facing slope (Table 1) that have beenmonitored
for many decades (since at least 1963). Streams draining these catchments are routed
through 90◦ or 120◦ V-notch weirs and, in two catchments, San Dimas flumes, to estimate
discharge (Q) by measuring stage height in these hydraulic structures. From 1963 to
2012, stage heights were recorded using Leupold-Stevens A-35 strip chart recorders with
7-jewel Chelsea Marine clocks for the V-notches and Belfort FW-1 recorders for the
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Table 1 Characteristics of 6 south-facing watershed at the Hubbard Brook Experimental Forest. As-
pect, slope and elevation represent watershed means (range shown in parentheses). Analyses of uncer-
tainty due to gaps were conducted on watershed 6, with watersheds 1–5 used as predictors in the infilling
model.

Watershed Area (ha) Aspect Slope (◦) Elevation (m)

1 11.8 S 22 ◦C E 19.7 623 (448–747)
2 15.6 S 31 ◦C E 19.6 613 (503–716)
3 42.4 S 23 ◦CW 17.1 632 (527–732)
4 36.1 S 40 ◦C E 16.8 608 (442–747)
5 21.9 S 24 ◦C E 17.5 635 (488–462)
6 13.2 S 32 ◦C E 16.1 683 (549–792)

flumes. Depending on Q, between 2 and 130 inflection points per day were manually
digitized from the strip charts. When gaps occurred, technicians filled them on the strip
charts by visually comparing them to the hydrographs from nearby streams. The digitized
inflection points describing stage height on the strip charts were converted to Q using the
theoretical stage-discharge relationship (Bailey et al., 2003). A 5-minute record of discharge
was generated based on linear interpolation between inflection points, which we will refer
to as ‘‘observations.’’

Characterizing Streamflow Gaps
We identified the causes and duration of all gaps from 1996 to 2009 in Watershed 6
(W6), a reference watershed at HBEF that has been the focus of extensive long-term
ecological studies (Likens, 2013). Prior to 1996, the occurrence and causes of gaps were
not documented. Using field notes, we categorized the cause of each gap as equipment
failure, technician error (e.g., failing to replace strip chart paper or to tighten the pen on
the chart recorder), planned maintenance, or unreliable data due to ice or debris in the
weir (Campbell et al., 2016). We characterized Q for each observation during the gap as
described below.

Uncertainty due to streamflow gaps
Filling gaps in streamflow
We filled gaps in discharge from W6 using an ensemble of predictions based on the
five other south-facing weirs (Table 1). Ensemble predictions are generally more robust
and are more accurate than single models (Ren, Zhang & Suganthan, 2016). Five-minute
observations from 1963 to 2012 (5,259,601 observations total) were used to model the
individual relationships in specific discharge (qW , where W identifies the predictor
watershed) between watersheds. Because the relationship in discharge between W6 and
the predictor watersheds is flow-dependent, we used a binned regression approach. These
relationships were developed by binning 95 qW by percentile P (qW ,P) and calculating the
median qW ,P for each percentile (q̃W ,P), with the exception of the 1st and 99th percentiles,
which are discussed below. We calculated the median q in W6 (q̃6,PW ) for the timestamps
corresponding to the qW ,P of each of the five predictor watersheds. The values of q̃6,PW
were linearly interpolated between percentiles (Fig. 1A). To avoid predicting negative flow,
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Figure 1 (A) The relationships between specific discharge (q) in watershed 6 and the five predictor wa-
tersheds, with an inset showing the full range of recorded discharge; (B) the comparison of measured
and ensemble-predicted 5-minute q for the record of study (n = 5,259,601) compared to the 1:1 line
(red).

Full-size DOI: 10.7717/peerj.9531/fig-1

qw values less than qW ,0.5 were linearly interpolated to (0,0). For qW > qW ,99.5, we fit a least
squares linear regression to paired qW and q6 values. The resulting relationships produced
five separate predictions for each observation of q6 (Fig. 1A), and the median of these
values was selected as the best prediction, denoted q̂6 (Fig. 1B). We used these predictions
to estimate q6 during real and simulated gaps in the record.

The q̂6 values were often offset from the actual values at the beginning or end of a gap.
To correct this, we forced, or ‘‘snapped,’’ the predicted flow to match the measured values
at the beginning and end of each gap. This was done using the ratio of actual to predicted
values at the beginning and end of the gap and multiplying by a linearly interpolated
ratio for all q̂6 values during the gap (Fig. 2). Similar approaches have been used to fill
gaps in streamwater chemical concentrations between samples using flow-concentration
relationships (Aulenbach & Hooper, 2006; Vanni et al., 2001) and gaps in soil respiration
data using relationships with temperature (Bae et al., 2015). The resulting model predicted
q6 with a Nash-Sutcliffe efficiency of 0.95 [Figure 1b;](Nash & Sutcliffe, 1970).

Effects of gap length and flow rate on runoff uncertainty
To examine the effect of gap duration and hydrologic conditions on runoff (RO) uncertainty
in W6, we simulated gaps of ten different durations ranging from one hour to one month
(1, 6, 12, 24, 48, 96, 168, 336, 504, and 672 h). For each gap duration we randomly created
100,000 simulated gaps in the W6 record, excluding time periods that included real gaps.
For each simulated gap, we calculated the error associated with gapfilling by subtracting
the total RO observed in the data from the total RO predicted by our ensemble model. To
describe the effect of q on gap uncertainty we divided gaps of each duration into octiles
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based on the mean q during each simulated gap, resulting in 12,500 simulated gaps for
each combination of duration and flow-rate octile.

Uncertainty in annual runoff due to gaps at Hubbard Brook
We applied a similar approach to that described above to calculate the uncertainty in
annual RO (ROann) due to gaps in the q6 record. For each real gap (G) in the record, we
randomly sampled from the entire record to create 10,000 simulated gaps (G′) of the same
duration as the actual gap. To ensure similar hydrologic conditions between G and G′, we
calculated the simulated RO over the period of G (ROG) and the measured RO for each
associated G′ (ROG′), then eliminated the 90% of ROG′ values with the largest absolute
difference between ROG and ROG′ . Using the remaining 1000 ROG′ values for each G,
we calculated 1000 possible values of the error (EG) between predicted runoff R̂OG′ and
measured ROG′ during the simulated gap (EG = R̂OG′−ROG′). To estimate uncertainty
due to gaps in each water year, an estimate of the distribution of annual error (Eann) was
generated by iteratively summing G′ for each G in the water year, over 1000 iterations.
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RESULTS
All years we analyzed (1996–2009) contained gaps in the record. On average there were
21.9 ± 8.5 (s.d.) gaps per year, lasting an average of 1.1± 0.3 days. The median gap length
in our dataset (n= 270) was 13.5 h. Individual gaps ranged in duration from 30 min to
12 days. The most common cause of gaps in terms of total time was debris (44% of the
duration of all gaps) and ice (25% of total duration) in the v-notch. Equipment failure
(mostly due to problems with chart recorder clocks) accounted for 21% of the gap time,
while 7% was due to maintenance and repairs, and 3% due to human error (such as failing
to correctly load or collect a chart or replace a pen).

The causes of gaps varied with Q (Fig. 3). Maintenance is normally scheduled at low
flow, and this is reflected in the distribution ofQ during gaps associated with maintenance.
Debris in the weir was also responsible for gaps at lower than average Q, perhaps because
higher Q clears debris from the notch. Conversely, ice events and equipment failure
caused gaps at higher than average Q. Ice blockages commonly occur during the high flow
snowmelt period and equipment can be damaged during flood events throughout the year.

The uncertainty associated with RO during individual gaps averaged 2.8% and ranged
from 0–60% of RO (95% CI based on 100,000 simulations). The uncertainty in runoff
estimates during our simulated gaps was affected by both gap duration andQ (Fig. 4). Short
gaps applied during low Q had the smallest differences between simulated and observed
runoff. During gaps with low average Q (ca. < 1 l/s), gap duration appeared to be the
primary driver of uncertainty, while Q became more important at higher average Q (Fig.
4). We found that runoff during the gap–the product of gap duration and flow rate–was
a strong predictor of the uncertainty associated with the gap. For 80 simulated gaps of
different durations and flow rates, the standard deviation of the 1,000 estimates of error
during the gap (EG) was a linear function of estimated runoff during the gap (Fig. 5).

Gaps contributed surprisingly little uncertainty to estimates of annual runoff at Hubbard
Brook, which averaged 866 mm/year for W6 from 1996 to 2009. The annual range in
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Full-size DOI: 10.7717/peerj.9531/fig-5

uncertainty due to filling gaps averaged 11 mm/year (95% CI), but this varied considerably
by year. Of the years included in our analysis, the annual uncertainty due to gaps was
highest in 2009, with an estimated runoff of 1,194 mm and 95% confidence between 1,181
and 1,212 mm (Table 2). Uncertainty was lowest in 2006, with an estimated runoff of 1031
mm and a 95% CI of 1,030 to 1,032 mm. When considered as a percentage, the year with
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the highest annual uncertainty was again 2009, with a 95% CI of 2.7%, and the year with
lowest uncertainty was 2006, with a 95% CI representing 0.2% of annual runoff.

DISCUSSION
When all gap types were considered together, gaps occurred disproportionately during low
flow, but this trend may not hold true in larger watersheds. In an analysis of nationally
archived river flow data in the UK, data gaps tend to occur during high-flow events (Marsh,
2002). This may be due to differences in equipment. Gauging stations for larger streams
and rivers do not use v-notch weirs, and may not have the same issues associated with
debris obstructions, which tend to occur during low flow at Hubbard Brook (Fig. 3).

Uncertainty in discharge during gaps was orders of magnitude higher for longer gaps
and at higher flow (Fig. 4), with runoff during the gap being a better predictor than either
gap duration or Q alone (Fig. 5). The errors presented here generally follow highly skewed
distributions (note the logarithmic axes in Figs. 4 and 5), clearly highlighting that the
largest contributors to runoff uncertainty are the gaps occurring at high flows. In our case
study, with multiple gauged streams in close proximity to one another, it was perhaps not
surprising that an ensemble of regression relationships predicted runoff with high accuracy.
Uncertainty would likely be greater when infilling gaps in larger, unpaired watersheds (e.g.,
Kiang et al., 2013), though it was recently demonstrated that when <10% of the annual
record was missing, calibrated hydrologic models performed quite well across a wide range
of Australian catchments (Zhang & Post, 2018).

Using simulated gaps to estimate runoff uncertainty does not require the statistical
assumptions that parametric estimates require (e.g., homoscedasciscity, temporal
independence). The gaps used to create the error distributions were simulated from the
actual data, and thus represent the data structure better than estimates of error that assume
theoretical error distributions. For example, confidence intervals surrounding runoff
estimates are not required to be symmetrical, incorporating any biases present in the chosen
infilling model into the resulting uncertainty estimate. This approach is similar to those
commonly used to quantify uncertainty due to gaps in eddy fluxmeasurements (Richardson
& Hollinger, 2007) and can also be used to compare the efficacy of different gap filling
models (Falge et al., 2001; Harvey, Dixon & Hannaford, 2012). Once error distributions
have been created for each gap, it is easy to propagate the uncertainty in runoff due to gaps
along with other sources of uncertainty using Monte Carlo sampling (Campbell et al., 2016;
Richardson & Hollinger, 2007). The most appropriate infilling approach for a particular
gap may differ depending on conditions (Rees, 2008), making the simulated gap approach
particularly appealing, as it can easily provide errors associated with multiple models for
use in Monte Carlo simulations.

One benefit of scrutinizing gaps in data sets is to evaluate options for reducing them.
Maintenance (e.g., weir cleaning) is normally conducted when the error introduced by gap
filling is smallest, at low flow. The single most important source of gaps was debris in the
v-notch weir (44%), which has since been reduced by the addition of floating barriers in
the ponding basin. The occurrence of gaps due to equipment malfunction (21%) has been
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Table 2 Uncertainty in annual runoff due to gaps in watershed 6 at the Hubbard Brook Experimental Forest from 1996–2009.Uncertainty is reported as the 95% CI
(mm) and as a percentage of annual runoff in parentheses. In W6, 1 mm= 132,291 L. Confidence intervals< 0.1 mm are reported as 0.

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Annual Flux 601.3 699.8 496.9 757.9 847 950.7 897.7 871.8 828.8 742.8 1030.5 1403 808.7 1194.4

All Gaps 5.2 (0.4%) 3.1 (0.5%) 4.2 (0.4%) 2.9 (0.4) 10.0 (0.9%) 8.2 (0.8%) 1.8 (0.2%) 9.9 (0.8%) 1.9 (0.3%) 13.7 (1.2%) 1.5 (0.2%) 16.2 (1.5%) 1.6 (0.2%) 21.1 (2.1%)

Debris in Weir 0.45 (0.1%) 1.7 (0.2%) 1.4 (0.1%) 1.0 (0.1%) 0.3 (0%) 8.3 (1.3%) 1.7 (0.2%) 0.4 (0.1%) 1.0 (0.1%) 0.2 (0%) 0.2 (0%) 0.6 (0.1%) 0.1 (0%) 2.7 (0.2%)

Maintenance 0.2 (0%) 0.9 (0.1%) – 0 (0%) 0.1 (0%) 0.2 (0%) – 2.0 (0.2%) 0 (0%) 0 (0%) 0.1 (0%) 0.1 (0%) 0.1 (0%) 0 (0%)

Equipment Failure 0 (0%) 2.2 (0.2%) – – 9.8 (0.9%) – 0.8 (0.1%) – – – – 16.4 (1.5%) – 21.3 (1.7%)

Human Error 4.5 (0.6%) – 3.8 (0.3%) – – – – 8.9 (1.2%) – – 1.5 (0.1%) – 0.2 (0%) –

Ice 2.1 (0.2%) 1.1 (0.1%) 1.6 (0.1%) 2.5 (0.4%) – 0.6 (0.1%) 0.2 (0%) 4.0 (0.4%) 1.6 (0.2%) 13.7 (1.2%) 0.3 (0%) 0.9 (0.1%) 1.5 (0.2%) –
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reduced by replacing antiquated mechanical chart recorders with digital sensors (optical
encoders). The duration of gaps has been reduced by the radio transmission of electronic
data, because problems can be identified and corrected more quickly than when weirs were
visited weekly. Since many of these upgrades are recent, we expect that the number and
duration of gaps has decreased compared with the time period reported here.

The rise of synthetic science and subsequent push for publicly available data sharing
requires that data be properly curated and documented. Perhaps more than most
environmental data, stream discharge estimates nearly always require a complete record
due to their use in cumulative water or material flux calculations. The decision whether
to archive data with gaps or with infilled values lies with the research team. When infilled
values are included, they should be clearly identified as modeled values, so that data users
can decide how to best treat them in their analyses. If gaps are filled, the infilling method
should be described, along with the confidence associated with the modeled estimates
(Hamilton & Moore, 2012).

CONCLUSIONS
Computing advances in recent decades have allowed for a broader range of infilling
techniques for streamflow data gaps, but the uncertainty associated with these newmethods
often cannot be assessed using traditional parametric methods. This work represents
significant progress towards describing the uncertainty associated with infilling stream
flow gaps in hydrologic datasets. Our estimates of uncertainty in runoff will contribute to
uncertainty in estimates of other variables that rely on discharge, including stream solute
loads (Campbell et al., 2016) and evapotranspiration (Green et al., 2018). Quantifying
uncertainty provides the basis to prioritize improvements to streamflow monitoring
strategies. In the hopes that others will benefit from and improve upon this method, we
have made the code used in this analysis available in (Supplementary Information).
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