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ABSTRACT

Ecosystem budgets of water and elements can be

difficult to estimate and are often unreplicated,

making it challenging to provide confidence in

estimates of ecosystem pools and fluxes. We con-

ducted a survey to learn about current practices in

reporting uncertainties in precipitation, stream-

flow, soils, and vegetation. Uncertainty derives

from natural variation, which is commonly char-

acterized by replicate samples, and from imperfect

knowledge, which includes measurement error and

model error (model fit and model selection). We

asked questions about whether researchers report

uncertainties in these sources, whether they know

how to do so, and how important they believe the

sources to be. We also asked questions about

identifying missing or unusable values, filling gaps

in data, and dealing with analytical concentrations

below detection limits. We obtained responses from

140 researchers representing 90 research sites

around the world. Natural variation was the most

important source of uncertainty in calculations of

biomass and soil pools, according to respondents in

these fields, and sampling error was the source they

most often reported. In contrast, uncertainty in the

chemical analysis of precipitation and stream water

was the source most commonly reported by

hydrologists, although they rated this one of the

least important sources of uncertainty to calcula-

tions of hydrologic flux. Awareness of types of

uncertainty can help identify sources of uncer-

tainty that may have been overlooked, and quan-

tifying them will help determine which sources are

most important to report.

Key words: uncertainty analysis; ecosystem

ecology; precipitation; streamflow; biomass; soils;

measurement error; model error.

INTRODUCTION

Measurements from ecosystems are often reported

without taking uncertainty into account. This

omission stems in part from the fact that each

ecosystem is unique, making it challenging to

identify replicate sampling units. Even in cases

where replication may be possible, it can be pro-

hibitively expensive to monitor the number of

ecosystems required for an acceptable level of

uncertainty. Without replication it is still possible to

propagate the sources of error and report the

uncertainty in reported ecosystem pools or fluxes

(for example, Campbell and others 2016). How-

ever, the calculations can be complex when mul-

tiple sources of uncertainty are involved. In light of

these complexities, it is not surprising that in these
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types of studies, estimates of uncertainty are often

incorrect, incomplete, or omitted entirely.

Sources of Uncertainty: A Conceptual
Taxonomy

Ecological data are characterized by many different

types of uncertainty, even in seemingly straight-

forward studies (Regan and others 2002; Harmon

and others 2007; Ascough and others 2008). In the

broadest sense, uncertainty arises both from natu-

ral variability and from imperfect knowledge (Fig-

ure 1). Natural variability is inherent to the system

and is the result of both spatial and temporal

heterogeneity. Natural variability cannot be de-

creased by making more measurements or by using

better equipment, but better measurements allow

us to better describe it. In other words, we can in-

crease our confidence in our estimate of the dis-

persion of the population, although this statistic is

rarely reported (Johnson and others 1990).

In contrast, knowledge uncertainty is due to

imperfect understanding of, or ability to charac-

terize, a system (Harmon and others 2007). The

error due to uncertain knowledge can be systematic

(biased) or random. Measurement error is a form of

knowledge uncertainty that arises from measure-

ment devices and sampling strategies (Csavina and

others 2017). Knowledge uncertainty also includes

model error, and model error includes not only fit

statistics, which are easy to describe, but also

uncertainty in the structure of models. There may

be more than one possible model, and thus, the

selection of a model is another source of knowledge

uncertainty. Interpolating between observations is

a source of uncertainty that can be considered a

form of modeling.

We conducted a survey to ascertain the current

state of knowledge and of practices for reporting

uncertainty in ecosystem studies, specifically

addressing vegetation, soils, precipitation, and

streamflow. We expected to find sampling error to

be the most commonly reported source of uncer-

tainty, followed by measurement error, with model

uncertainty, especially model selection uncer-

tainty, the least commonly reported. We were

interested in finding out which sources of uncer-

tainty are considered important by researchers and

which sources researchers do not know how to

quantify.

SURVEY DESIGN AND IMPLEMENTATION

We distributed an on-line survey to assess the

current reporting practices among researchers

studying precipitation, streamflow, biomass, and

soils. We listed the sources of uncertainty in esti-

mates of these ecosystem components (for exam-

ple, pool sizes for biomass and soil, water and

nutrient fluxes for precipitation and streamflow),

including sources due to natural variation, mea-

surement error, model prediction, and model

selection (Figure 2). Survey respondents were

asked whether they commonly report each source

of uncertainty, whether they know how to quan-

tify each source of uncertainty, and how important

they believe each source to be (rarely, occasionally,

or often important). Additionally, respondents

were asked how they identify missing or unusable

values, how they fill data gaps, and how they deal

with analytical concentrations below detection

limits.

We made the survey available to researchers as

part of a workshop at the 2015 All Scientists

Meeting of the Long Term Ecological Research

Figure 1. Sources of uncertainty in ecosystem studies

(modified from Harmon and others 2007). Red arrows

indicate sources of uncertainty that contribute to other

sources of uncertainty (Color figure online).

Figure 2. Survey questions address uncertainty in stud-

ies of vegetation, soil, precipitation, and stream water.

972 R. D. Yanai and others



(LTER) Network. We followed up with researchers

at LTER sites from which we did not have responses

from a primary investigator, research scientist, or

postdoctoral researcher, and obtained responses

from all of the LTER sites. We also announced the

survey via the Ecological Society of America’s list-

serv, the LTER Network, the Soil Science Society of

America’s Forest Soils list, and the Quantifying

Uncertainty in Ecosystem Studies (QUEST) Re-

search Coordination Network. Our collaborators

distributed the survey to researchers in the Na-

tional Ecological Observatory Network (NEON),

Environmental Protection Agency (EPA), United

States Geological Survey (USGS), National Atmo-

spheric Deposition Program (NADP), United States

Forest Service (USFS), and the Clean Air Status and

Trends Network (CASTNET). Responses were col-

lected between August 30, 2015, and January 12,

2016. In total, we received 140 responses from

individuals at 90 different research sites or net-

works. Although our outreach efforts targeted re-

search in the USA, we received responses from

researchers in 13 countries. The number of re-

sponses by study type was 44 for vegetation, 29 for

soils, 46 for streamflow, and 35 for precipitation.

Many individuals responded for more than one

study type.

REPORTING SOURCES OF UNCERTAINTY

Sampling Error

As expected, sampling error was the most often

reported of all sources of error for vegetation (Fig-

ure 3) and soils (Figure 4), which are generally

described by replicate measurements. The highest

rate of reporting of the 42 sources we listed was

96% for sampling error in soil chemistry (23 of 24

respondents). Sampling error in soil mass was less

often reported (16 of 22 respondents for bulk

density and 8 of 17 for coarse fraction). Sampling

error in soil horizon depth was reported by about

half of those respondents for which this source was

relevant.

For vegetation, sampling error in biomass was

reported by 30 of 35 respondents. Fewer of the

respondents study vegetation chemistry, and the

proportion of respondents who report sampling

error in vegetation chemistry was somewhat less

than for biomass (18 of 23 respondents).

We did not include questions about sampling

error for precipitation and streams, because streams

are not usually treated as replicates in ecosystem

studies, and precipitation, when it is sampled at

multiple points, is used to characterize spatial pat-

tern rather than to establish confidence in a mean.

Measurement Error

Sources of measurement error varied according to

the object of study. For analysis of precipitation and

stream water (Figure 5), the source most often re-

ported was the uncertainty of chemical analyses. In

studies of streams, 84% (of 31 respondents) report

the uncertainty of chemical analyses; in studies of

precipitation, 63% (of 24 respondents) report this

source. Uncertainty in chemical analyses is also

reported by a majority of soil chemistry studies

(68%) and vegetation chemistry studies (60%).

Quality control in laboratory analyses is standard-

ized, widely practiced, and routinely reported, at

least by the laboratories. It may be more common

for researchers to report the QC data than to

propagate the uncertainty to see the effect on the

reported results.

Other sources of measurement uncertainty dif-

fered by discipline. For vegetation studies (Fig-

ure 3), there are some sources of error that are

thought not to be very important and are usually

not reported, such as error in plot boundaries, plot

area, and tree status (live, snag, or stump). Error in

identifying species was more often rated as at least

sometimes important, but was still usually not re-

ported. Measurement error (for example, diameter

of trees, clipping height for grasses) was rated as at

least sometimes important by 60% of respondents,

and 52% said they report this source of uncer-

tainty.

For precipitation studies, measurement error of

precipitation gages was rated as often important but

not often reported, even though most respondents

indicated that they know how to report this source

(Figure 5). This could mean that measuring this

source of uncertainty is feasible but rarely achieved

(Yang and others 1998). For stream studies, the

relationship between stage height and discharge

was perceived as the most important source of

measurement error and was also the most often

reported. Area of the watershed is another source

of measurement error in stream loads. This is the

least often reported of all stream sources (39%),

and while it was also rated least important, it still

has the biggest gap between perceived importance

(76%) and reporting.

Missing information in a time series is a source of

uncertainty in precipitation and stream water

studies. While the source of uncertainty is a gap in

measurements, the method of filling gaps may

entail model error. For stream studies, the rate of

Current Practices in Reporting Uncertainty in Ecosystem Ecology 973



reporting error due to gap filling in both discharge

(76%) and concentration (74%) is very high (Fig-

ure 5). For precipitation studies, error due to gap

filling is less often reported: 54% for gaps in vol-

ume and 35% for gaps in chemistry. Gaps were

rated as more important for streams (85% for vol-

ume, 92% for chemistry) than for precipitation

(67% for volume, 65% for chemistry). Filling gaps

Figure 3. Sources of uncertainty in biomass (A, B) and vegetation chemistry (C).
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in stream chemistry had the highest importance

rating of all error sources in precipitation and

stream studies. In most studies, stream chemistry is

not measured continuously, and interpolation is

required to make estimates of loads. In contrast,

precipitation collectors integrate over a time period,

and gaps as a source of uncertainty were less often

rated as important, as described above. Gaps in

stream flow records are more common than gaps in

precipitation records, as some downtime is

inevitable for weir maintenance, and accidents that

prevent data collection are more common for

streams than for precipitation (Campbell and others

2016).

Model Error

In studies of forest vegetation, biomass is com-

monly estimated from measurements of tree

diameter (and sometimes height) using allometric

regression models. Of the respondents who rated

this source of uncertainty, most said that uncer-

tainty in biomass models was at least sometimes

important (Figure 3), with 39% reporting the

uncertainty in predicting individuals (the predic-

tion interval) and 70% reporting uncertainty in the

regression (the confidence interval). Only 35%

report both sources of error. Uncertainty in model

selection was also considered to be important, and

53% claim to report this source.

Models are used in precipitation studies for

interpolating spatially between gauges (Figure 5).

Surprisingly, the uncertainty in model selection

(45%) is more often reported than the model error

itself (23%). For some types of interpolation (for

example, regression models, kriging), the fit

statistics provide estimates of uncertainty in the

predictions. Simply assigning every point in space

Figure 4. Sources of uncertainty in soil chemistry (A) and mass (B).

Current Practices in Reporting Uncertainty in Ecosystem Ecology 975



the value of the nearest collector (Theissen poly-

gons) is a common practice in studies established

before the advent of high-speed computing, and it’s

not clear how to assign error to this approach.

However, 65% of respondents said that they know

how to estimate uncertainty in interpolation

models, while only 54% said they know how to

estimate uncertainty in model selection, so lack of

knowledge does not explain the low rate of

reporting of model uncertainty in precipitation

interpolation. This was the least often reported of

all error sources in precipitation studies.

Although precipitation is monitored at points on

the landscape requiring spatial interpolation,

streams integrate over a catchment area. Stream

chemistry is usually measured infrequently (for

example, weekly or monthly), requiring interpo-

lation over time. Model error is much more often

reported for stream studies than precipitation

studies, with 74 and 68% of respondents claiming

to report model error and model selection error,

respectively. Fewer respondents claim to know

how to report this source of error than the number

of respondents who report it, which may seem odd,

but there was only one case where this source was

reported by a respondent who didn’t know how to

report it; there were many who answered the

question about knowledge even though they an-

swered ‘‘not applicable’’ for the question about

reporting this source of error.

Knowledge of Error Estimation

We expected sampling error to be the best under-

stood of all the sources of uncertainty. Indeed, for

soils, 100% of 24 respondents reported that they

know how to report sampling error in soil chem-

istry (Figure 4). Only one person admitted not

knowing how to report sampling error in soil mass

(bulk density) and coarse fraction. Knowledge was

slightly lower for uncertainty in spatial or temporal

pattern, averaging 86% for soil chemistry and 78%

for soil mass. Soil chemistry can be characterized

from grab samples, whereas uncertainty in soil

mass requires propagating errors in measurements

of soil volume and bulk density, which are difficult

Figure 5. Sources of uncertainty in precipitation (A) and stream water (B).
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to measure in rocky soils (Throop and others 2012;

Vadeboncoeur and others 2012).

For vegetation, again, the highest knowledge

rating was for sampling error (replicate plots) with

94% of 35 respondents for biomass and 87% of 23

respondents for vegetation chemistry claiming

knowledge of how to report these sources (Fig-

ure 3). The sources with the lowest knowledge

ratings were the measurement errors that are rarely

reported (Holdaway and others 2014): errors in plot

boundaries, plot area, species identification, and

tree status (for example, live, snag, stump), with

25–37% of respondents claiming knowledge.

Knowledge of how to report model error was

intermediate, with 65% knowing how to report

prediction intervals, 81% knowing how to report

confidence intervals, and 67% knowing how to

report model selection uncertainty. Knowledge

among the vegetation scientists about reporting

uncertainty in spatial and temporal patterns was

high but slightly lower than among the soil scien-

tists, averaging 71% for vegetation chemistry and

72% for biomass.

Rates of reported knowledge were highest among

hydrologists (Figure 5). This field has a long history

of uncertainty analysis (Hornbeck 1965; Kundze-

wicz 1995; Beven and Binley 2013). Within this

group, the lowest rates of knowledge were reported

for model selection error for both stream water

fluxes and precipitation interpolation models.

Spatial and Temporal Patterns

For both vegetation and soils, we asked questions

about uncertainties in spatial and temporal pat-

terns. These sources of error were more often re-

ported for soils than for vegetation (Figures 3, 4).

As was the case for sampling error, uncertainty in

soil patterns across space and time was more often

reported for chemistry (81%) than for soil mass

(62%). Uncertainty in temporal variation within

years was less commonly reported for soils than

uncertainty in temporal variation across years.

In contrast, for vegetation studies, uncertainty in

tissue chemistry was rated more often important

for pattern within years than across years. Uncer-

tainty in changes in biomass over time was even

more often reported (71%) than uncertainty in

changes in tissue chemistry (47%).

Most researchers reported some sort of uncer-

tainty in temporal patterns (for example, error in

the slope over time), but the sources they chose to

report varied. For example, researchers interested

in vegetation often reported the error associated

with changes in biomass over time (71% of

respondents), but not changes in tissue chemistry

(47% of respondents). In contrast, soil researchers

were more likely to report the error associated with

changes in soil chemistry (88% of respondents)

than the error associated with estimates of soil mass

(69% of respondents). This difference may be due

in part to differences in the focus of monitoring

efforts. For example, repeated ‘‘grab’’ samples of

soil for chemical analysis are relatively easy to ob-

tain compared to estimates of soil volume and

density, and it is more common to take repeated

measures of tree diameter than of wood tissue

chemistry (Yang and others 2016). Reporting

uncertainty in changes in tissue chemistry was less

common for scientists studying forests (1 of 6

respondents) than for those working in other veg-

etation types (6 of 9 respondents), in which vege-

tation is destructively harvested to assess biomass.

Researchers interested in spatial patterns in bio-

mass commonly reported error associated with the

interpolation of biomass (67% of respondents) and

tissue chemistry (47% of respondents), but of the

researchers that reported at least one of these, only

20% reported both. For soil scientists, 91% of those

interested in spatial patterns in soil reported the

uncertainty associated with their interpolation of

chemistry, while only 71% reported uncertainty

associated with interpolation of mass.

Practices for Handling Problematic Data

We asked respondents how they handle problems

with unusable values, such as outliers and unreal-

istic or impossible values such as negative masses or

concentrations. Fifty-five researchers described

how they identify unusable values (Figure 6). The

great majority of these reported using expert

judgment (85%), often in combination with sta-

tistical filtering (42%). A minority (15%) reported

using statistical filtering without expert judgment.

Values below detection can be common when,

for example, measuring chemical concentrations of

precipitation, stream water, soils, or vegetation. A

surprising number of respondents (15 of 60, or

25%) reported replacing these values with zeros,

which would introduce a bias, as zero is always

lower than the true value. A smaller number (9)

reported omitting the values, which would intro-

duce a bias in the other direction, as omitting low

values would leave the others to overestimate the

true mean. Using half the detection limit was about

as common (17) as using zero or omitting the val-

ues. This may or may not be closer to the truth than

using zero; 1/2 the detection limit is a reasonable

estimate if the frequency distribution of concen-

Current Practices in Reporting Uncertainty in Ecosystem Ecology 977



trations is linear between zero and the detection

limit. Using 1/
ffiffiffi

2
p

may be better yet, assuming that

the distribution resembles the tail of a normal dis-

tribution (Croghan and Egeghy 2003).

A variety of methods are used to fill gaps in the

chemical record, as might occur when samples are

judged to be unusable. For soils, the most common

approach is to omit the values (67%). Soil sampling

is commonly conducted with multiple spatially

explicit observations, such that omitting an obser-

vation might amount to substituting the mean va-

lue. For precipitation studies, there was not a single

most common approach: using regression (23%),

the average of surrounding values (27%), and

spatial interpolation (20%) were all common,

while simulation modeling was less common (7%).

Other approaches were also important (23%);

these included using the values from the closest site

and leaving the values unfilled. Methods for filling

gaps in stream chemistry mirrored those of pre-

cipitation: the most common gap-filling method

was linear interpolation (30%), followed by

regression modeling (20%) and averaging sur-

rounding values (20%). Simulation modeling was

the least common method (7%), and nearly a

quarter of respondents (23%) chose ‘‘other.’’ For

gaps in precipitation volume, spatial interpolation

was the most common method (36%), followed by

regression (28%) and averaging surrounding val-

ues (15%).

Finally, we asked whether methods for filling

gaps and identifying unusable values are stan-

dardized or left to the researcher’s discretion.

Standardization was more common in studies of

precipitation (72%) and stream flow (54%) than in

studies of soils (42%) or vegetation (39%).

OTHER CONSIDERATIONS

Confidence in the Survey Results

We did not attempt to verify whether the re-

searchers surveyed were accurately reporting their

Figure 6. Practices for handling problematic data.
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practices. Some of the sources of uncertainty are

difficult to distinguish, and respondents may not

have interpreted the questions in the way we in-

tended. Future research will address the reporting

of uncertainty sources in publications in these

areas. It is interesting to note that our analysis of

the calcium budget at Hubbard Brook (Campbell

and others 2016) found gaps in precipitation

chemistry to be the largest source of error to the net

hydrologic flux, but this was ranked by researchers

as the least important source of error in our survey.

Likewise, our respondents ranked the runoff cal-

culation and the stage-discharge model as the most

important sources of error, but these do not appear

to be important contributors to error at Hubbard

Brook. Without comprehensive uncertainty bud-

gets for many more sites, we cannot determine

whether the errors reported for Hubbard Brook are

unusual or whether other researchers are mistaken

about error at their sites.

Future Research Needs

There is still a need for development of approaches

to uncertainty analysis. Personal computers are

powerful enough to implement Monte Carlo ap-

proaches to error propagation, which makes it

possible to include multiple sources of uncertainty

without making the assumptions needed for para-

metric statistics. It would be inefficient, though, to

include all possible sources of error, and it is diffi-

cult to judge whether errors that are not accounted

for are in fact important. Increased awareness of

the possible sources of error and multiple reports of

their magnitudes will improve our collective wis-

dom on the importance of various sources in dif-

ferent types of systems.

One area that requires attention is the issue of

overlapping uncertainties (Figure 1 shows these

relationships with red arrows). For example, mea-

surement error affects estimates of every other er-

ror source. When measurements are taken to

describe, for example, spatial pattern, we attribute

the unexplained variation to sampling error. If both

measurement error and sampling error are in-

cluded in a Monte Carlo analysis, the measurement

error is accounted for twice. Similarly, if two

models are compared, we call the difference model

selection error, but error in model fit can contribute

to the observed difference. Model fit has tradi-

tionally been described using a confidence interval

for the uncertainty in the mean and a prediction

interval for the uncertainty in predicting an indi-

vidual. Although the prediction interval is consid-

ered to include the confidence interval, randomly

applying uncertainty in the individuals in a Monte

Carlo implementation results in an underestimate

of uncertainty in model fit (Yanai and others 2012),

whereas including both would overestimate

uncertainty. Bayesian approaches may provide a

better method for propagating multiple overlapping

uncertainty sources (Clark 2007).

Recommendations

There is still room for improvement in the appli-

cation of uncertainty analysis in ecosystem studies.

Some sources of uncertainty are well understood

and commonly reported, such as the contribution

of natural variation to sampling error. It is easy to

overlook sources that are not routinely quantified.

One way to attempt a comprehensive inventory of

uncertainty sources is to scrutinize all the steps in

data collection and analysis. This approach might

reveal sources that are not usually reported, such as

measurement of plot area for vegetation or of

watershed area for runoff. Repeating the mea-

surements is one approach to quantifying these

sources (Holdaway and others 2014).

Uncertainty in chemical analyses is routinely

quantified but less routinely reported, and may be

confusing. There are multiple ways of reporting

uncertainty in measurements, and the language

used to describe them has been inconsistent

(Csavina and others 2017; JCGM 2008). There are

efforts to standardize terminology in the metrology

community (JCGM 2008, 2012), but usage varies

across disciplines. Manufacturers may overstate the

performance of their instruments, and the quality

metrics they provide are not always well docu-

mented (Csavina and others 2017); where possible,

these should be independently verified.

Propagating multiple sources of uncertainty

through an ecosystem calculation can be chal-

lenging. Monte Carlo approaches are attractive

because they are computationally straightforward,

even for complex calculations, and require few

assumptions (IPCC 2006). If errors are independent

and normally distributed, which is rarely the case,

then summing in quadrature (for example, Harmel

2006) would give the same result as a Monte Carlo

simulation. The Monte Carlo approach has an

advantage over analytical uncertainty propagation

because actual distributions of inputs can be used

(for example, Campbell and others 2016) without

making assumptions about statistical distributions.

Any approach will give biased results if it fails to

account for correlated uncertainties. For example,

propagating uncertainties in the slope and inter-

cept of a regression as if they were independent
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overestimates the uncertainty in the statistical

model. Uncertainty is underestimated if model

error is applied independently to individuals in a

sample; the same model error should be applied to

all the individuals at each iteration of a Monte

Carlo simulation (Yanai and others 2010). Modern

computing makes it quick and easy to implement

error propagation; the challenges are in identify-

ing the sources of error that are important and in

correctly formulating approaches to quantify

them.

Value of Uncertainty Analysis

While scientists recognize that uncertainties are

inevitable in any estimate, non-scientists may ex-

pect a single best answer and are dissatisfied with a

distribution of potential values. For example, the

wide variation in climate projections among models

has been depicted as a scientific weakness. Avoid-

ing knowledge of shortcomings would be a worse

impediment to progress; only by quantifying sour-

ces of uncertainty can we determine how best to

allocate limited resources to improve estimates.

Uncertainty analysis can improve efficiency of

environmental monitoring, evaluation of research

priorities, and predictions of future environmental

change that are essential for risk assessment and

decision making.
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