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ABSTRACT
A model of solute uptake that accepts  root growth,  water uptake,

and soil  solution concentration  as time­varying  input   is  required  to
interactively link plant  and soil processes. The advantage of the steady­
state approach to solute uptake over more exact numerical  solutions
lies  in  the  independence  of  the  mathematical  solution  to  previous
conditions.  Uptake  thus calculated can accommodate unpredictable
changes  in  root  growth  and  mortality,  root  density,  water  uptake
rates,  and sources and sinks of nutrients such  as decomposition  and
leaching,  as required in simulating plant growth for multiple seasons
in  a  dynamic  soil  environment.  Previous  steady­state  models  were
improved by including nonlinear uptake kinetics and the contribution
of  new root  growth  to uptake.  The  correction  for new root  growth
is  most  important  for  relatively  fast­growing  plants  and  immobile
nutrients.  The importance  of each model parameter,  as indicated by
sensitivity  analysis,  depends on the values of other  parameters.  For
example,  root  surface area and uptake  kinetics are  important  when
solution concentrations  at the root surface are high, while root length,
water uptake rate, and diffusion  become  important when delivery of
solute  to the root surface  is limiting. Because the limiting factors can
vary  with  environmental  and  plant  conditions,  it  is  important   to
represent  these  aspects  of  nutrient  uptake  in  modeling  plant­soil
interactions.  A  consistent  derivation  of  the  improvements  and  the
original  model  is appended.

M ODELING PLANT UPTAKE of dissolved soil constit-
uents is essential to predicting plant growth under

nutrient limitation. Solute uptake by plants can also be
important in explaining changes in the chemistry of soil
and drainage waters. Many existing models of forest
growth, such as FORTNITE (Aber et al., 1978, 1982),
FORCYTE (Kimmins and Scoullar, 1984), and FOR-
EST-BGC (Running and Coughlan, 1988), and of soil
chemistry at the ecosystem scale, such as the ILWAS
model (Gherini et al., 1985; Davis et al., 1987), the
"magic" model (Cosby et al., 1986), and STEADYQL
(Furrer et al., 1989, 1990), do not include mechanistic
representations of nutrient uptake. This omission occurs
partly because solute uptake by plants is not entirely
within the domain of either soil chemistry or plant growth
models, but also because a suitable model has not been
available. To be useful in long-term simulations of vege-
tated ecosystems, a nutrient uptake model should be
capable of beginning the simulation with a fully estab-
lished root system and it should allow root growth and
mortality. To serve as a link between soil and plant
simulators, it should accept time-varying inputs of soil
solution chemistry, transpiration rates, and root dynamics
during the simulation. None of the existing nutrient
uptake models has all of these properties.

Bouldin (1961) formulated the mathematics of diffu-
sion of solutes through an infinite and stationary soil
solution to a cylindrical sink, assuming that the rate of
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uptake is proportional to the solution concentration at
the root surface. Olsen et al. (1962) devised a similar
model, exploring different assumptions about the bound-
ary condition at the root surface, namely (i) constant
rate of uptake and (ii) constant concentration at the root
surface. These diffusion-only models were applied to
explain phosphate movement and uptake. For more mo-
bile ions, mass flow of the solution can also be an
important mechanism of solute movement. Nye and Spi-
ers (1964) presented the equations for simultaneous mass
flow and diffusion, and solved them for the steady-state
condition. To describe the solute uptake and concentra-
tion profile of the root with time required solving these
same equations in the non-steady-state condition; Nye
and Marriot (1969) and Claassen and Barber (1976)
solved them numerically, allowing Michaelis-Menton
uptake kinetics. Claassen and Barber (1976) further al-
lowed for a distribution of root ages, assuming an expo-
nentially growing root system. None of these models
included interroot competition. Cushman (1979) and Bar-
ber and Cushman (1981) included interroot competition
as an outer boundary condition of no nutrient movement,
although the distance to this boundary was not affected
by changing root density. The Barber-Cushman model
has been reprogrammed for microcomputers and is easy
to use (Gates and Barber, 1987). It is not, however,
suitable for linking to a plant or soil simulator because,
like its predecessor numerical models, it cannot accept
time-varying input. The pattern of root growth (linear
or exponential) must be specified in advance, and the
rate of water influx and the average distance between
root axes are parameters that cannot vary during the
course of a simulation. Further, there can be no other
sources or sinks for solute besides plant uptake, an
untenable situation for long time scales.

The steady-state approach originated by Nye and Spi-
ers (1964) offers a solution to the problem of time-vary ing
input. This approach assumes that the concentration pro-
file around the root can be considered to be in a steady
state; change with time is accommodated by recalculating
the solution at each iteration of the model. The advantage
of the steady-state approach lies in the independence of
the mathematical solution to previous conditions. This
makes it ideal for linking plant and soil simulation mod-
els, where feedback between plant and soil makes it
impossible to specify changes in root growth and soil
status in advance of running the models. By calculating
solute uptake at each time step, changes in root density
can dictate a changing radius for the zone of influence
of a root, water uptake rates can be varied with time,
and the amount of solute in the system can be changed
at each iteration. The concentration profile around the
root develops stepwise in a manner similar to that pre-
dicted by the more exact models (Baldwin et al., 1973).

One weakness of the steady-state models to date has
been the omission of the nutritional benefit incurred by
new roots entering unexploited soil. Nye et al. (1975)
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provided for root length and root density to change with
time, but because new roots enter the model having
already attained a steady-state concentration profile, the
solute taken up hi attaining that profile is ignored. I
extended the iterative steady-state approach of Nye and
Spiers (1964) and Baldwin et al. (1973) to include the
contribution made by new roots in the creation of the
steady-state depletion zone. I also added the capability
to substitute Michaelis-Menton uptake kinetics for the
linear uptake used in the derivation of these models.

MODEL  DESCRIPTION

Theoretical Approach
Three processes interact to determine the movement of solute

to the root surface: (i) solute uptake by the root, (ii)  flow of
water toward the root, drawn by transpiration, and (iii)  diffusion
along the concentration gradient created by active uptake and
solution flow. A zone of solute depletion or accumulation
develops around the root, depending on whether the rate of
uptake exceeds the rate of solution flow. Under stable condi-
tions, in which the rate of water uptake, the relation of solute
uptake to concentration at the root surface, and the solute
concentration in bulk solution remain constant, a steady state
will  be attained, with an unchanging concentration profile
around the root (Nye and Spiers, 1964). This steady-state
concentration profile can be described mathematically,
allowing concentration at the root surface and thus solute
uptake to be calculated from the average solution concentration.

In a natural environment, of course, plant and soil conditions
are far from stable; a steady state may rarely be attained.
Water uptake varies daily; soil solution concentrations vary
seasonally; even the relation between uptake and solute concen-
trations may change with plant status. For this reason, the
steady state is not assumed to hold for longer than the model
time step, but is solved anew at each iteration. The model
should be applied at a time step shorter than the variations of
interest, be they yearly, seasonal, or daily; fluctuations briefer
than the model time step are ignored. An additional error is
introduced by prohibiting non-steady-state concentration pro-
files, which must exist at least temporarily with every change
in conditions. The difference between the exact solution and
the approximation by iterative steady states is small (Baldwin
etal., 1973).

I applied the iterative steady-state approach to simulating
uptake by established roots, that is, roots that have been in
place long enough to establish depletion zones. Uptake by
these roots can be calculated from the solute concentration at
the root surface and the appropriate uptake kinetics. The solute
concentration at the root surface is, in turn, calculated from
the average concentration in the bulk solution. The average
concentration is a more useful state variable than concentration
at the root surface because it can readily be adjusted for losses
from and additions to the soil solution between time steps.

The steady-state concentration at the root surface will give
the correct uptake rate for new roots only where nutrient
concentrations are too high to limit uptake, such that both
established and new roots are taking up the solute at their
maximum possible rate (/max). In concentration-limited condi-
tions, new roots will have higher uptake rates than predicted
by the steady-state calculation because of the higher than
steady-state concentrations prevailing at the root surface during
the time that the new roots create their depletion zones and
approach the steady state. To simulate the contribution to solute
uptake of new roots attaining the steady state, the amount of
solute that is absent from the root zone in the steady state can

be calculated and transferred to the plant. This transfer can
be made gradually during the period that it takes to create the
steady-state depletion zone, or, if short-term variation in root
growth rates is unimportant, nutrient transfers can be credited
to the plant in a single time step following root growth.

Model Assumptions

The following assumptions are inherent in the model. Solute
uptake is assumed to be independent of water uptake; only
active uptake is considered. Spatial variation in the soil is not
treated, except for the variation radial to the root created by
root activity. Roots are assumed to be uniformly distributed,
such that a single average radial distance to the next root
describes all roots. Roots have a uniform radius. Root hairs
and mycorrhizae are not explicitly considered, although r0
could be defined as the effective radius of the root hairs. There
is no change in root function (nutrient or water uptake rate)
with age. These assumptions are common to preceding models;
additional discussion can be found in Nye and Marriot (1969)
and Claassen and Barber (1976). Mycorrhizal roots can be
treated either by adjusting the uptake parameters to represent
mycorrhizal roots (Yanai and Eissenstat, 1994, unpublished
data) or by assuming that uptake occurs mainly through hyphae
and selecting parameter values characteristic of hyphae (Yanai
etal., 1994a).

The following characteristics distinguish my model from
previous models. Water uptake rate, average radial distance
to the next root, and root growth rate need not be constant
but can be changed at each time step. Diffusion need not
be independent of soil water content; the effective diffusion
coefficient can be recalculated at each tune step. Similarly,
solute uptake at the root surface and soil buffer capacity need
not be linear with solution concentration. Michaelis-Menton
kinetics can be used to calculate uptake at the root surface,
and any reversible form of exchange isotherm can be used to
describe solute absorption.

Finally, the model is applied to each solute independently;
solutes are assumed not to interact at the root surface. However,
solutes may interact inside the plant or in the soil. For example,
cation exchange can be calculated between iterations of the
uptake calculation by calls to a solute equilibration routine
(e.g., Bouldin, 1989; Yanai et al., 1994b).

Model Equations

Uptake is calculated as the product of the root surface area
(27troL), the concentration of solute at the root surface (C0),
a rate constant (a), and the time elapsed (Af):

Uptake = 27t/-oLaC0Af [1]
The value of C0 is calculated from the average concentration in
the bulk solution, Cav, because C0 is generally not measured and
Cav is a useful state variable (variables are defined in Table 1):

Co  =  PC Ca

where

PC = v0  a + (v0 ­  a)

[2]

[3]

and

Y =
Db

This relationship is derived in the Appendix. It depends on
the assumption mat a balance has been attained between solute
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Table 1.  Symbols and definitions used in the model.
A  =  solute removed in the creation of the depletion zone per

centimeter of root  length (mol).
a  =  root absorbing power (cm s~'): uptake (mol cm" 2 S"1)  = a C,

[optionally, a  =  /,»,/(&.,  +  C0)].
b =  soil buffer  power (dimensionless):  ft  =  8  + pKd,  where 8 =

volumetric soil water content, p  =  soil bulk density
(g cm~3),  and  /Ci  is the slope of  the adsorption
isotherm (cm3 g" 1).

Cav  =  average concentration of substance in the soil solution
(mol  cm"3).

Co  =  concentration of substance at the root surface (mol cm" 3).
C, =  concentration of substance in the soil solution at radius r

(mol  cm" 3).
D  =  effective  diffusion  coefficient  of the solute through the soil

(cm2 s"1): D  = DiOf/b,  where D,  =  diffusion  coefficient  in
water (cm2 s'1), 9  =  volumetric soil water content,
and / =  impedance factor (dimensionless).

F =  outward radial  flux of substance (mol cm" 2 s"1).
Y  = ravJDb  (dimensionless).
Ima  =  maximal nutrient  influx   rate (mol cm"2 s"').
km =  half­saturation constant  for uptake (mol cm" 3).
L =  root length (cm).
L, =  root density, length per unit volume (cm root cm" 3 soil).
Pc  =  the proportion  C0/C,,.
r  =  radial distance from the center of the root (cm),
r., =  the r at which C, = Cm.
r0  =  radius of the root (cm),
r,  =  average radial distance  from the center of the root to the

next root's zone of  influence (cm).
Af  =  the model time step.
L'ntw   =  uptake of solute by new roots in the process of establishing

depletion zones (mol).
Uat  ­  uptake of solute by established roots in steady­state depletion

zones (mol).
vc  =  inward  radial velocity of water at the root surface (cm s~ ')•
v, =  inward radial velocity of water at radius r (cm s~').

uptake and the delivery of solute to the root surface by diffusion
and solution flow (i.e., the amount of solute in the rhizosphere
is at a steady state). These equations were presented by Baldwin
et al. (1973) and Nye and Tinker (1977). The product Db
should be calculated as D$f, where D\ = diffusion coefficient
in water (cm2 s"1), 6 = volumetric soil water content, and/,
a function of 0, is the impedance (dimensionless). The soil
buffer power, b, drops out of the calculation because D =
Dftflb (Nye and Tinker, 1977; Van Rees et al., 1990).

At high concentrations, where a solute uptake system is
saturated, the linear root absorption coefficient, a, should be
calculated from Michaelis-Menton parameters. Because aC0 =

Co) [4]

This calculation of a with changing C0 must be implemented
iteratively, because C0 is a function of a. The value of a from
the previous time step of the model is a good approximation
of the value at the next step; a solution can generally be
achieved in only a few iterations of Eq. [2], [3], and [4].

The above analysis applies to roots after they have attained
steady-state concentrations in the depletion zone. During the
period before the depletion zone is fully established, however,
concentrations at the root surface are higher than at steady
state (unless the solute is one for which a < v0 and the
rhizosphere has higher concentrations than bulk soil). Uptake
will therefore be underestimated if all roots are assumed to
be at steady state from the time they are grown, as was assumed
by Nye et al. (1975).

At the other extreme from assuming that all roots are in
steady-state depletion zones, some models (Barber and Cush-
man, 1981; Barber, 1984) have adopted the assumption that,
at the start of the simulation, soil concentrations are uniform,
such that the concentration at the root surface, C0, is the same
as the average, Cav. Smethurst and Comerford (1993) have

made modifications to the steady-state model to simulate the
same condition by applying Eq. [1], [2], and [3] to a soil
volume that increases with time at the rate of expansion of
the depletion zone [approximated by 2j(Dt)], as suggested by
Nye and Tinker (1977).

Although these models have proven applicable to annual
crops with small initial root systems, they seem less appropriate
to perennial plants, which may have large root systems at the
time a simulation is initiated. It would be most correct to
assume that roots are exposed to the average or bulk soil
concentration only when they are first grown. Only the estab-
lished roots need be assumed to exist in the steady state. This
approach has the advantage that calculated uptake at a given
point in time is not sensitive to the time at which the model
was first applied. Models that assume that C0 equals Cav at the
start of a simulation would give a much higher estimate of
uptake if the model were applied anew each day than if it
were applied once for the entire growing season.

Uptake by roots during the formation of the depletion zone
can be calculated by calculating uptake rates using Eq. [1]
with C0 varying as the depletion zone develops, as implemented
by Barber and Cushman (1981) and Smethurst and Comerford
(1993). It is simpler, but less temporally exact, to evaluate
the amount of solute absent from the depletion zone in the
steady state (A), and use this total to represent the additional
uptake provided by the existence of roots in undepleted soil.
Uptake by new roots is calculated from the amount of new
root length:

ew  = 4 AL [5]
where

2Pc/Vo-a\ , l / r a v
~~ ——— I 1————— Mo ——

v0 \2 -

and where

,2 -Y

[6]

[7]

These equations are derived in the Appendix.
The value of f/new can be less than zero when the rhizosphere

has higher concentrations of the solute than the average solu-
tion. This happens whenever a < v0, as is not uncommon
when uptake is limited by /max. In this case, a negative correction
is needed because uptake is higher at steady state than from
unexploited soil, and so less solute has entered the root than
would be predicted by C/esI alone.

New roots become established roots, for the purpose of
calculation, as soon as this t/new has been assessed. The simplest
implementation transfers all of f/TOW to the plant in the same
time step as root growth; alternatively, the transfer can be
made gradually across multiple time steps. The amount of
time required for the depletion zone to extend to the interroot
distance, rx, at the rate 2\/(Df), is approximately (rx - r0)

2/4£>
(Baldwin and Nye, 1974). In simulations in which the contribu-
tion to uptake of new root growth is a small fraction of total
uptake, the error introduced by the timing of U  ̂ will  be
small. Even if  £/«,», is large, timing errors will  be small if the
rate of root growth is relatively constant.

At each time step of an uptake calculation, Cav can be
updated to account for removal of solute by uptake (as well
as for other removals and additions such as those due to
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Table  2.  Parameter  values  used  in  sensitivity  analyses.  One­
dimensional sensitivity analyses used the baseline values, mea­
sured for uptake of P by loblolly pine seedlings in Lilly  soil (Kelly
et  al.,  1992).  Two­dimensional  sensitivity  analyses  used  the
ranges shown for the parameters that varied and the baseline
values for those held constant.

0.5 1.0
Relative  Variation  in  Parameter

Fig. 1.  Sensitivity of calculated uptake ((/«) as each of the parameters
is varied  from  0.5  to  1.5 of  the value  for P uptake by a  loblolly
pine seedling while the other parameters are held constant. Parame­
ter values for this one­dimensional analysis are given  in Table 2.

mineralization, reactions with soil surfaces, and leaching). The
relation between the total amount of solute in the soil and Cav
can be described by the buifer power, b, such that

A Cav
 = b ACtotal

where Ctotai is the sum of the dissolved solute concentration
(0Cav) and the adsorbed solute (Cs), combined on the basis of
soil volume. The appropriate formulation of b therefore in-
cludes the contribution of dissolved solute to the total: b =
0 + pKt, where 0 = volumetric soil water content, p = soil
bulk density (g cm"3), and KA is the slope of the adsorption
isotherm (cm3 g~') (Van Rees et al., 1990). The adsorption
isotherm need not be linear, but if it is not, the value of b
will  depend on Cav, because Ka = dCs/dCav (e.g., Kovar and
Barber, 1990). Other models may be substituted to simulate
changes in Cav due to uptake (e.g., Bouldin, 1989; Yanai et
al., 1994b).

SENSITIVITY  ANALYSIS
There are about 10 parameters required in the calcula-

tion of uptake (more or less depending on the method
of calculating a, b, and D), half of which must be
estimated separately for each nutrient element. Sensitiv-
ity analysis provides a basis for judging which parameters
are most important to measure accurately. The impor-
tance of each parameter depends, however, on the values
of all the parameters. For a particular application of
the model, it is sufficient to vary each parameter value
independently to assess its relative importance in that
application. For example, Fig. 1 shows the variation in
calculated uptake (Uest) as each of the parameters is
varied from 0.5 to 1.5 of the value for P uptake by a
loblolly pine (Pinus taeda L.) seedling (Kelly et al.,
1992), while the other parameters are held constant. For
uptake by already established roots, the root length (L)
and the average solution concentration (Cav) are the most
influential parameters, with nearly proportional effects
on uptake; increasing root radius (r0) and root absorbing

Parameter
L, cm
r,, cm
r0, cm
v0, cm
/max, molcm~2s~'
fcm, mol cm~3

o, cm s~'
C.,, mol cm"3

D, cm2s-'
b

Baseline
285
2.0

0.035
5.66 x 10-'
2.68 x 10-13

1.6 x 10-"
1.86 x 10-*
0.19 x 10-«
8.17 x 10-'

5.84

Range

0.1-2.0
0.0003-0.035

0.0-2.0 x 10-«
2 x 10-'3-5.6 x 10 -12

0.0-2.0 x 10-'
1 x 10-'-2.7 x 10-"

power (a) also have large effects. Uptake increases
slightly with increasing D or b and decreases slightly
with increasing interroot distance (rx). In this parameter
set, t/est is insensitive to the value of v0. Similar analyses
have been applied to previous models of nutrient uptake
(Nye and Tinker, 1977; Barber, 1984; Kelly et al.,
1992). The relative importance of parameters denned in
these one-dimensional sensitivity analyses can depend
quite strongly on the values of the other parameters,
which are not readily considered in a one-dimensional
sensitivity analysis. For example, the capacity for uptake
at the root surface (defined by a or by km and /max) is
important only when C0, the concentration at the root
surface, is high. Although the existence of such interac-
tions is well known (Barber, 1984), multidimensional
sensitivity analyses of uptake models have not previously
been presented in systematic or quantitative form.

A complete multidimensional sensitivity analysis can
be described by partial differential equations; the deriva-
tion of these equations is straightforward but the results
are complex equations that are difficult to visualize in
the six or more dimensions of interest. I have chosen a
few two-dimensional relationships to illustrate the effect
of input parameter values on calculated uptake in more
depth than can be afforded by a one-dimensional analysis.
This analysis is neither systematic nor exhaustive, and
there may be important interactions of two or more
variables that are not revealed here. In the following
discussion I consider the interactions of /max and Cav, v0
and Cav, v0 and Db, and rx and Cav in determining the
rate of solution uptake.

The kinetics of uptake at the root surface (represented
in the model by /max and km) limit uptake only when soil
solution concentrations (Cav) are high (Fig. 2a). Uptake
increases linearly with increasing Cav until uptake ap-
proaches 7max, which it cannot exceed. This limit is
reached at higher values of Cav with increasing 7max. The
shape of the transition between Cav limitation and T^
limitation depends on the value of km (not illustrated
here).

Although root surface area (2nroL) appears as a multi-
plier in the equation for uptake (uptake = 27iroLaC0Af,
Eq. [1]), uptake is not always proportional to surface
area, because of the dependence of C0 on r0 (Eq. [3]).
In the one-dimensional sensitivity analysis of P uptake
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Fig.  2.  Two­dimensional  sensitivity analyses of calculated uptake  (t/esi):  (a) as a  function of  the  average concentration  in soil solution  (Ca»)  for
varying values of  the Michaelis­Menton uptake parameter  /max;  (b)  as a function of  root  radius  (r0)  for various  values of €„   with  /„,„   =
4  x  10~12  mol  cm~2  s"1 and D  =  5  x  10~12  cm2  s"1;  (c)  as  a  function of  radial  velocity of  water uptake  (v»)  for  various  values of  the
effective  diffusion coefficient (D) with  /mm  = 4  x  10~12 mol cm" 2 s"1 and b =  1; and (d) as a function of the half­distance  to the next root
( rj  for various values of the average concentration in soil solution  (Cav) with D  =  5  x  10~12 cm2 s"1. Variables not varied were held at the
values given in Table 2 except where noted otherwise.

by loblolly seedlings, uptake was nearly proportional to
L [not exactly proportional because L appears in the
calculation of C0, if  rx is calculated from it (Eq. [12])],
but the effect of changes in r0 on uptake was somewhat
less (Fig. 1). When uptake is limited by kinetics at the
root surface (/max), increases in root surface area provide
a proportional increase in uptake, as illustrated by the
upper curves in Fig. 2b. When uptake is limited, not
by /max, but by the concentration of solute at the root
surface, then increases in root radius have a much smaller
effect on uptake (illustrated by the lower curves in Fig.
2b). As a result, uptake is proportional to root surface

area when C0 is high relative to /max, but length is more
predictive when delivery of solute to the root surface is
limiting.

The parameters that control the rate of delivery of
solute to the root surface by solution flow (v0) and diffu-
sion (Db) become important when C0 is low and /max is
not limiting. The effect of v0 is most important when
Db is low (Fig. 2c), that is, when diffusion contributes
little to solute movement toward the root. The parameters
D and b are not independent in the model equations, as
only their product appears; in fact, because b appears
in the denominator in constructing D, the steady-state
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£  Radial distance  from root  center  (cm)

Fig. 3.  Solute concentration profile around the root for various values
of the half­distance to the next root (rs). Values of the other parame­
ters are those for P in Table 2.

solution is not sensitive at all to b if its contribution to
D is included. Uptake during multiple time steps would
be sensitive to b, because b determines the rate of change
in Cav with time.

There are other relationships between these variables
in controlling nutrient uptake that cannot be demonstrated
by calculation of a single steady-state solution to the
uptake equations, but are only manifested in a simulation
that allows nutrient depletion of the soil with time. For
example, we expect there to be a threshold root length
density, LV, and hence a threshold interroot distance, rx,
at which competition between roots for nutrients becomes
important and incremental additions of root length bring
diminishing returns to the plant. This expected relation-
ship does not hold, however, for the steady-state solution
to uptake as a function of rx (Fig. 2d). In fact, the reverse
is true: uptake per unit length of root is greater at high
root density (low rx) than at low density, given the same
Cav. This relationship obtains because rav (the r at which
Cr = Cav) is closer to the root when rx is small and the
gradient dCr/dr is not very variable, and so C0 is highest
at low rx (Fig. 3). In a calculation of uptake implemented
over multiple time steps, high root density would reduce
Cav more quickly than low root density, and the expected
reduction in uptake would result.

The sensitivity of uptake by new roots ([/new) to model
parameters is illustrated with the same values for loblolly
pine seedlings used in the analysis of [/est. Results of
the one-dimensional sensitivity analysis are given per
unit length of root growth (Fig. 4); the effect of root
growth rate is, of course, linear on Uaev/. The most
important parameter in this data set is root density (rx)
or, because rx = (7iLv)~1/2, root length (L). The value
of [/new is also highly dependent on the average solution
concentration (Cav) and the soil buffer capacity (b). These
parameters together (£Cav) describe the total concentra-
tion of solute in the soil system. The root radius (r0) has
a positive effect on [/new by increasing the sink strength
of the root and hence the steepness of the depletion zone
around the root. Likewise, Unenev, is higher at low values
of the effective diffusion coefficient (D) because the deple-
tion zone is deepened. The parameters a and v0 are less

*. 400

I
o

» 300-

g
DC

I

* 200
.a

I
Q.

100-

'L—

1—
0.5 1.0

Relative Variation in Parameter
1.5

Fig.  4.  Sensitivity of calculated uptake due to new root growth  (I/new)
as each of  the  parameters  is varied  from  0.5  to  1.5  of  the  value
for  P uptake by a loblolly pine seedling while the other parameters
are held constant. Parameter values for this one­dimensional analy­
sis are  given  in Table 2.

important to the calculation of [/new for this combination
of parameter values.

The importance of Uaevt relative to {/est depends partly
on the growth rate of roots. For the case of loblolly
pine seedlings, with a growth rate of 5% per day, [/new
contributed 20% of total P uptake (Fig. 5). The value
of f/new as a fraction of C/est is linear with root growth
rate, dropping in this illustration to 10% of f/est if the
root growth rate is only 2% per day. Diffusion rate is
also an important factor in the contribution of Unew to
total uptake: the more immobile the nutrient, the more
important is the exploration of undepleted soil by new
root growth. The interroot distance, rx, increased the
importance of C/new: as root density increases, the benefit
to new roots of exploring new soil diminishes. The other
parameters were not important to the ratio of f/new to
[/est in this data set, v0 because it had little effect on
either [/new or [/est, and the others because they had
positive effects on both. The importance of these parame-
ters, however, depends on the values of other parameters,
as discussed above, and may not always be negligible.

DISCUSSION
The iterative steady-state approach provides a simple

method for calculating nutrient uptake by plants that
have long-lived roots and multiple periods of root growth.
By considering the concentration profile around the roots
to be in steady state (solute diffusion and solution flow
balance uptake) at each time step, the effects of active
solute uptake, diffusion, water flow, and root growth on
solute uptake can be solved analytically, providing a
mathematical description of uptake in terms of known
plant and soil properties. Uptake can be simulated contin-
uously as roots grow; the rate of root growth need not
be predetermined, as is required by the model of Barber
and Cushman (1981). Changes in root density, water
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0.35-

0.5

Relative  Variation  in  Parameter

Fig.  5.  Sensitivity of the ratio of uptake due to new root growth ([/„„)
to uptake  by established roots ([/«) as each  of the parameters  is
varied from 0.5  to 1.5 of the value for P uptake by a loblolly pine
seedling  while the other parameters are held constant. Parameter
values for this one­dimensional  analysis are given  in Table 2.

uptake rate, and soil solution concentrations can also be
specified arbitrarily at each time step. The model is an
improvement over previous steady-state uptake models
(Baldwin et al., 1973; Nye and Tinker, 1977) because
die nutrient extracted from soil in the process of attaining
a depletion zone is included in the uptake calculation.
In addition, the inclusion of Michaelis-Menton kinetics
is an improvement over linear uptake kinetics, especially
at high concentrations.

Sensitivity analysis is one method of describing the
behavior of a system of equations such as this model.
For a specific application of the model, a simple one-
dimensional sensitivity analysis, in which each of the
model parameters is varied independently by some frac-
tion while holding the other values constant, can provide
insight into which parameters are most important to know
precisely and which contribute the most error to the
calculation. For the example studied here, root length
and soil solution concentration were most influential in
the calculation of uptake by established roots; root den-
sity, soil concentration, and the effective diffusion co-
efficient were most influential in the amount of uptake
provided by the establishment of a depletion zone by
growing roots. These results depend, however, on the
situation studied, because the sensitivity of the model to
one parameter depends on the values of other parameters.
For example, the kinetics of uptake are limiting only
when solution concentrations are high at the root surface.
In such a situation, accurate estimation of /max (or a) is
critical to predicting uptake. Kelly et al. (1992) found
that Mg uptake by loblolly pine seedlings was greater
than model predictions; the combination of parameter
values they used resulted in accumulation of Mg at the
root surface, a clear indication of limitation by /max. In
this circumstance, uptake will be proportional to root
surface area. On the other hand, when uptake is limited
by the rate of delivery of solute to the root surface by

mass flow and diffusion, concentrations at the root surface
can be near zero. In this situation, increasing /max or a
has little effect on solute uptake; the rates of diffusion
and water uptake are more important. The root can be
viewed as a linear sink of zero concentration; in this
circumstance, root length is more predictive of solute
uptake than is root surface area.

Because the factors limiting uptake vary with environ-
mental conditions and plant status, a model of solute
uptake that considers only one or two limiting factors
(such as root surface area and soil solution chemistry)
will  not be applicable under a wide range of conditions
(such as changing root density). Including variables that
describe uptake kinetics, diffusion and mass flow, root
dynamics, and solution chemistry makes it unnecessary
to assume which of these factors are limiting to uptake
in a given simulation. For example, calculating the contri-
bution of [/new to total uptake will not be important to
all applications of the model. For NOa uptake by mature
trees, the correction [/new may be small because root
growth rates are low and diffusion is rapid. Calculating
[/new is most likely to be important for fast-growing
plants, such as annual plants or seedlings, and immobile
nutrients, such as phosphate. The case of P uptake by
loblolly pine seedlings, in which exploration of soil by
new roots contributed 20% of the total uptake, may be
considered an upper limit to the importance of UMVI for
tree and forest models.

Because these uptake equations allow time-varying
input, they can be used to link plant and soil models such
that feedbacks between the plant and soil are expressed.
For example, these uptake equations are included in the tree
physiological model TREGRO (Weinstein et al., 1992).
TREGRO simulates increased C allocation to roots under
nutrient stress; this increased root mass causes an increase
in nutrient uptake, partially relieving the nutrient stress
(Weinstein et al., 1991; note that in this early version
of TREGRO, soil nutrient availability was fixed for the
duration of a model run). Linking the soil chemistry
model YASE (Yanai et al., 1994b) to TREGRO permits
changes in the soil environment as well as changes in
tree status to influence nutrient uptake. For example,
the effect of elevated atmospheric COa on plant growth
should consider not only the effect of increased growth
or altered C allocation on nutrient demand, but also the
effect of changes hi litter quality or soil warming on
nutrient mineralization and availability. The steady-state
approach makes the equations describing uptake very
simple to evaluate. Including a detailed representation
of nutrient uptake can improve the performance of plant
and soil models.
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APPENDIX:  DERIVATION  OF EQUATIONS

The equations describing the concentration profile around
the root and the average concentration were published by
Baldwin et al. (1973) and Nye and Tinker (1977). The equations
that are presented for the first time here describe the amount
of solute contained in the depletion zone and the radius at
which the average concentration occurs. I give a new derivation
of the already published equations along with the derivation
of the new equations for two reasons. First, Baldwin et al.
(1973) and Nye and Tinker (1977) do not derive solute concen-
tration as a function of distance from the root but cite Nye
and Spiers (1964) for an equation that is not readily derived.
The notation changed during the course of these studies, adding
another difficulty to following the trail of the derivation. Sec-
ond, Nye and Spiers (1964) made use of the variable C\, the
"initial"  solution concentration, and of the boundary condition
that at t = 0, Co = C\, which is inappropriate when simulating
an already established root system. The definition of Q and
the use of this boundary condition are not necessary to the
derivation. This appendix provides readers with a single deriva-
tion of the old equations, using consistent notation and making
no reference to initial conditions. It also presents the new
equations, which correct for the solute gained during the forma-
tion of the steady-state depletion zone. Symbols and definitions
are presented in Table 1.

At any distance from the root, solute moves towards the
root by mass flow (vrQ and by diffusion [Db(dCr/dr)]\  the
net effect is

[8]
AT

the negative sign showing that the flux is inward. If the soil
water content is not changing with time, the water flux through
any radius r is equal to that at the root surface:

2nrvr = 2nr0v0

Substituting for vr in Eq. [8],

dr
[9]

Under constant conditions, solute flux will reach a steady state
in which soil and solution concentrations are stable, and the
solute flux through any cylinder surrounding the root is the
same as that entering the root. In this condition, the radial
flux, 2nrF, is independent of distance from the root. Thus rF
is constant with respect to r. From Eq. [9],

r0v0Cr-Dbr ——
dr

[10]

To find the value of rF in the steady state, consider the flux
at the root surface. Active root uptake is essential to the
formation of a depletion zone and the maintenance of the
concentration gradient that drives diffusion. In this treatment,
I describe the rate of solute uptake as a function of nutrient
concentration at the root surface. I assume that nutrient uptake

is independent of plant nutrient status and water uptake rate.
The relationship between concentration at the root surface (C0)
and uptake can have a variety of forms. The simplest is a
linear relation, as used by Nye and Spiers (1964), Baldwin et
al. (1973), and Cushman (1979), in which a is a constant:

F = -aCo

Alternatively, a can be described as a function of Ca (Eq.
[4]), as in Nye and Marriott (1969), Claassen and Barber
(1976), and Barber and Cushman (1981), who use Michaelis-
Menton kinetics. Because a is independent of r, the following
derivation will apply to any formulation of a as long as nutrient
uptake is assumed to be independent of water uptake into the
root. Water movement influences nutrient uptake indirectly,
of course, through its effect on concentrations at the root
surface. The constant rF can now be expressed in terms of
conditions at the root surface:

rF = -r0aC0

Substituting for rF from Eq. [10],

f\/~*

r0v0Cr + Dbr—- = r0aC0
dr

which can be solved to find C, as a function of C0. Rearranging
and letting P = raaC0/Db and y = r0va/Db,

dC dr
3 - yC r

Integrating from C(r0) = C0 to C(r) = Cr>

1 ic
Y

gives
­1

Selectively expanding P and y and solving for Cr gives the
concentration profile with respect to r:

v0
[11]

This equation corresponds to Eq. [8] and [10] in Nye and
Spiers (1964), Eq. [vii]  in Baldwin et al. (1973), and Eq.
[7.14] in Nye and Tinker (1977).

In practice, the value of C0, the solute concentration at the
root surface, is rarely known. Because the average solution
concentration, Cav, can be more readily measured or calculated,
it would be preferable to describe C0 in terms of Cav. The
average solution concentration for the whole soil can be found
from the average solution concentration around an average
root.

The zone of influence of the average root can be calculated
from the root density by considering a regular array of parallel
roots. The cross-sectional area of soil assigned to each root,
nr\, is 1/Lv, where L, is root length per unit volume, and
therefore

1
[12]

The average solution concentration, Cav, is the sum of solute
in solution in the root zone cross section (obtained as the
integral of Cr from the root surface, r0, to the average radius
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£
Radial  distance  from  root  center  (cm)

Fig.  6.  The concentration  profile with respect to r (O from the root
surface  (r =  r0)  to  the  average  radius of  the root  zone  (/• *)  (Eq.
[11]). The dark shading shows the area integrated to find the average
concentration  in  solution  (Cav)  (Eq. [13])  and  the  light  shading
shows the area integrated  to find the amount of solute absent from
the root zone  (A) relative to the average concentration  (Eq. [15]).

of the root zone, rx) divided by the cross-sectional area of the
root zone (Fig. 6):

Oav —

Cr2nrdr

n(ri-rt)
[13]

Substituting C, from Eq. [11],

Gv = 2-

;^|a + (v0-<x)(-] |ro>

(ri  - rl)
we obtain the relationship between Cav and C0:

c.-S[. + (*-«(-i-)<a!^]  [,4,
v0 [ \2 - Y/ (rJr0)

2 - 1 \

This is Eq. [viii]  of Baldwin et al. (1973) and Eq. [7.16] of
Nye and Tinker (1977).

The radius, rav, at which C, = Cav, can be found by equating
Eq. [11] for Cr with Eq. [14] for Cav and solving for r:

[/ 2 \(rx/r0)^-lp
r--ri^-j) (r^-l j  [?]

For convenience we will define Pc as the proportionality be-
tween Cav and C0:

'­£
-Hl.^-.of * V&!£l̂ r  H,

-Y/ (rJr0)
2-l

Now C0 and Cr can be calculated from Cav. In particular, the
amount of solute uptake (t/cst) during a timestep Af by roots
of length L that have attained the steady state is

t/est = 2nr0LaPcCmAt [!']
Equation [IT gives the uptake by roots after the steady-state

concentration profile has been achieved. The amount of solute
that is removed by new roots, l/new, in the process of attaining
the steady state can be calculated by comparing the amount

of nutrient in the soil before root growth with the steady-state
concentration profile Cr. Assume that new roots enter the soil
at random and thus sample the average solution concentration
Cav. The amount of solute (A) removed from the depletion
zone per unit length of root is obtained by integrating the
concentration change, Cav — Cr, across the radial distance
from r = ra, the root surface, to rav, and including the factor
b for the amount of exchangeable solute released from the soil
(Fig. 6).

!
rav

(Cav-Q27trdr  [15]
'O

Separating the terms and substituting C, from Eq. [11],

A = 2nb\ravCavrdr
Jr0

_ 2Kb fav ̂  [o + (vo - a) f-V  rdr
° U \ K /

^O [_ \'0/

The first term is simply the amount of solute in the root
zone at the average concentration before this root was grown.
Integrating gives

A = nb CJ (1 - —— ] (rl - r*)

2Pc/v0-a\ 2|/A-av\
2"Y

I ' o I I —— I 1
v0 \ 2 - y

[6]

the amount of solute removed from the depletion zone per
unit length of root, where rav is given by Eq. [7]. Thus the
amount of solute provided by an amount of root growth AL
is

f/new = A AL [5]
Total uptake for each model time step is the sum of l/est and
C/new*
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