Dear Ruth D. Yanai,

Your manuscript proof is ready for you to check.

What you need to do now:

1. Please check and approve your proof within 2 working days.
2. Respond to all queries. Refer to the FAQs and Help button for help on how to make changes and write comments. All queries must be addressed in order for your paper to be processed.
3. If necessary, use the query manager in the editing tool to write instructions for the typesetter to carry out additional corrections.
4. If there are additional requirements for your journal, such as Open Access, they will be outlined below. If there are no comments, please proceed to "What happens next?".
5. If you would like:
 o Your article to be Open Access, and you have not already purchased it,
 o Or if there are page charges required for the journal you have submitted to,
 o Please complete the attached relevant forms and return them with your proof.

Note: The option for pop-up windows should be enabled in your Internet browser to view the author instructions page.

What happens next?

Once you return the proof and completed forms (if required) to us:

- We will prepare your manuscript (incorporating your changes) for online publication.
- You will receive an email upon publication about paying publication charges, if applicable.
Biomass accumulation in trees and downed wood in northern hardwood forests: Repeated measures of a successional chronosequence in New Hampshire, USA

Joseph M. Nash, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing – original draft, Writing – review & editing, Mathematical A. Vadeboncoeur, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing – review & editing.

Gregory G. McGee, Methodology, Writing – review & editing.

Christopher W. Woodall, Methodology, Writing – review & editing.

Department of Sustainable Resource Management, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210

Q1 [Copy Editing Review to Author] AUTHOR: Please check that all author names are spelled correctly and that the details of the affiliation(s) and author contributions are complete and associated with the correct author. Please provide ORCID numbers if available. [Reply by Author] All author names and affiliations are correct. ORCID numbers are as follows: Joseph M. Nash: 0000-0001-7695-1441, Matthew A. Vadeboncoeur: 0000-0002-8269-0708, Gregory G. McGee: 0000-0001-7437-8100, Christopher W. Woodall: 0000-0001-8076-6214, Ruth D. Yanai: 0000-0001-6387-2489.

Q2 [Copy Editing Review to Author] AUTHOR: A few tips to navigate the PXE system: (1) If you wish to see the changes that you have made to your file, then click on "View Changes" tab at the top of the screen. It will generate a tracked changes document with the redlines and strikeouts. (2) To make changes to your file or to respond to queries, go back to the "Edit" tab. (3) If you make text changes to your file, want to see the changes in the proof layout, click on "Proof PDF" tab and click on "Generate/Refresh." (4) Respond to all queries except for any you may see that begin with "APTARA," as they are for our production team. (5) Changes to the reference section can simply be made in replies to queries or in new queries. (6) Final page balancing and spacing about section headings will be adjusted at the next stage. [Reply]
Forest biomass is an important carbon stock, and forest growth currently offsets more than 10% of annual US greenhouse gas emissions (Donnike et al. 2022). Predicting carbon accumulation in aging forests is a challenge in eastern North America where much of the landscape consists of maturing second-growth forests that established following large-scale clearing of primary forests in the 18th and 19th centuries (Constable 1984; Nyland et al. 1986; Izard 1999; Bellemere et al. 2002). Thus, the development of successional forests in the northern hardwoods type of eastern North America (Dyer 2006) is cited in the text but is not listed in the references list. Please either delete the in-text citation or provide full reference details following journal style. [Reply by Author] Dyer, J. M. 2006. Revisiting the deciduous forests of eastern North America. BioScience, 56(4), 341-352. Q5 [Reply Contributor] The reference Dyer 2006 is cited in the text but has not been listed in the reference list. Please either provide the reference with complete publication details or delete the in-text citation from the text. [Reply] In-text citation deleted.

Forest biomass accumulation is driven by tree growth and mortality while exhibiting a high degree of spatial and temporal variation. Standing and downed trees are two major components of forest biomass. Standing tree biomass accumulates as a function of tree growth and mortality, while downed woody debris (DWD) accumulation is driven by inputs from overstory trees and outputs via decomposition and combustion during stand development. In theory, as forests age, biomass pools should reach a dynamic steady-state where inputs and outputs are roughly balanced (Bormann and Likens 1979; Oliver and Larson 1996). But in northern hardwoods, the accumulation of tree biomass following stand-replacing disturbances such as clearcutting or blowdowns is difficult to predict. A variety of simulation models have been used to characterize forest biomass dynamics, but empirical data are critical for evaluating them. One such model developed at Hubbard Brook, NH, USA, described live aboveground biomass in northern hardwood forests increasing for about 100 years following disturbance and then decreasing slightly as even-aged stands transition to uneven-aged structures characterized by regeneration within small canopy gaps formed by the death of single or multiple trees (Bormann and Likens 1979). Observational studies have reported a wide range of biomass accumulation trajectories at different sites. Aboveground live biomass at the Hubbard Brook Experimental Forest peaked and declined earlier than expected, at about 80 years (Battles et al. 2014). In a meta-analysis of data from sites across the northeastern United States, aboveground live biomass was observed to accumulate for over 200 years before reaching an asymptote (Keeton et al. 2011). Q7 [Reply Contributor] Please check the term “Northeastern United States” for correctness in the sentence “In a meta-analysis of data from sites across...” [Reply by Author] I changed “northeastern United States” to “northeastern US.” Importantly, observations are sparse for forests within the transition period (100–200 years after harvest) proposed by Bormann and Likens (1979). Since this is the developmental stage where many successional northeastern forests are currently approaching, a comprehensive understanding of carbon dynamics in these forests is needed for scientifically informed management strategies.

Time and development, successional forests may eventually resemble old growth in structure and function. One of the defining features of old-growth forests is the presence of large standing and downed trees. Old-growth stands differed from maturing (~100 years old, post-fire) stands in the Adirondacks by having six times more live trees >50 cm diameter at breast height (dbh), with ~85% of large-diameter trees in the maturing stands being residual stems that survived the stand-replacing fires (Mcgee et al. 1999). Old-growth stands may also have about twice as much WDW exhibiting signs of advanced decomposition and 10 times more in logs >50 cm compared to maturing stands (Mcgee et al. 1999). While there are general time frames proposed for aging forests to resemble old growth, additional data from a range of site ages would allow for a more accurate estimate of how many years are needed for the diameter distribution of stems, and therefore the structural complexity of maturing forests, to resemble old growth. DWD is an integral component of forest ecosystem processes including carbon and nutrient cycling (Lasota et al. 2018; Harmon et al. 2020). Finer dowed material (fine woody debris) is less often studied but represents an appreciable stock of carbon in forest growth (Mattson et al. 1987) that is easily influenced by insect and disease outbreaks (Orwig and Foster 1998). DWD provides habitat for hyphophytes (Anderson and Hytten 1991), insects (Grove 2002), small mammals (Uctiel et al. 2003), amphibians (De Graaf and Yamasaki 2001) and fungi (Noséni et al. 2004; Brazee et al. 2014) and provides germination sites for many vascular plants (Mcgee and Birmingham 1997; Mcgee 2001). The size distribution of woody debris is relevant for fire ecology as it determines fuel loads, fuel diving rates, and the severity of fires (Shane et al. 2004; Peterson et al. 2015). Decomposition rates vary with...
DWD is an integral component of forest ecosystem processes including carbon and nutrient cycling (Lasota et al. 2018; Harmon et al. 2020). Finer downed material (fine woody debris) is less often studied but represents an appreciable stock of carbon in forests (Mattson et al. 1987) that is easily influenced by insect and disease outbreaks (Orwig and Foster 1998). DWD provides habitat for bryophytes (Anderson and Hytteborn 1991), insects (Grove 2002), small mammals (Uctel et al. 2003), amphibians (DeGraaf and Yamazaki 1997; McGee 2001). The size distribution of woody debris is relevant for fire ecology, the size and species of woody debris (Scheu and Scholze 1994) as well as properties of soil are altered by decomposing woody debris and the subsequent action of soil animals. Inputs of DWD are related to the frequency and severity of disturbance and consists of large logs and branches that have fallen to the forest floor. A stand-remnant DWD and that generated by disturbance are gradually lost to fragmentation initiation when the mortality of suppressed individuals is greatest (Franklin et secondary peak during self-thinning, but is highest following a stand-replacing natural senescence of individual trees, stochastic disturbances such as windthrow, from shade-intolerant to tolerant species in DWD assemblages (Allison et al. 2001). The ratio of DWD volume to live basal area (m3/ha) of sugar maple ranged from 0.00 to 0.45 in maturing stands to 0.05 to 1.04 in old-growth stands, while the ratio for beech ranged from 0.05 to 0.99 in maturing stands and 0.05 to 2.72 in old-growth stands (McGee 2000) (Q12 [Copy Editor Alert: Author] Please check the unit "m3/ha" for correctness). Throughout stand development, the pool of DWD is determined by the frequency and intensity of disturbances that create new DWD, combined with the rate of decomposition, which varies with species, climate, microbial communities, and the size of the woody debris (Liu et al. 2013) (Q13 [Copy Editor Alert: Author] Does it help to change to "ratio of DWD volume to live basal area"? It's a ratio, hence the colon). Forest development takes place over long periods of time and as a result is difficult to study directly. Forest surveys date from the late Middle Ages in Europe (Geschwammer et al. 2002), but the US national forest inventory was established only 100 years ago and has used repeated measures of permanent plots only since 2000 (Domke et al. 2022). An alternative approach is to substitute space for time by studying stands of different ages that have developed under similar climatic and edaphic conditions and interpreting them as a chronosequence. This approach, while efficient and powerful, is potentially problematic because it assumes that historic stand-setting disturbances are similar to recent disturbances, which is not always justified (Johnson and Miyashita 2008). Rather, methods used to conduct forest management and the conditions under which stand-replacing natural disturbances occur are not static but change with technological advances, environmental regulations, market influences, and environmental drivers. The effects of these changes could be incorrectly interpreted as a response to time since treatment. Repeated sampling can help overcome this limitation by tracking the progression of stands within the chronosequence, and thereby confirm or reject the patterns suggested by the space-for-time substitution (Yanai et al. 2000). **Objectives** We studied a chronosequence of northern hardwood stands ranging in age from 4 to 118 years since clearcutting at the time of their first measurement in 1994. Remeasurement at three intervals of 8-10 years allowed us to describe the expansion of species and dominant species biomass during stand development with emphasis on the impacts of insect outbreaks and expansion of forest floor on single measurements could vary. We also...
Introduction

Forest biomass is an important carbon stock, and forest growth currently offsets more than 10% of annual US greenhouse gas emissions (Domke et al. 2022). Predicting carbon accumulation in aging forests is important in eastern North America where much of the landscape consists of maturing second-growth forests that established following large-scale clearing of primary forests in the 18th and 19th centuries (Korstian 1984; Nyland et al. 1996; Island 1999; Bärlund et al. 2002). Thus, the development of successional forests in the northern hardwoods type of eastern North America (Dyer 2006) is of concern for both forest management and carbon accounting (Binkley et al. 2023), especially as climate change may exacerbate future disturbances including mortality from insects and disease. Management decisions may need to consider forest regeneration goals and maintenance of a variety of ecosystem services including critical structural habitat features, biodiversity, nutrient retention, and recreational opportunities that develop in older forests (Minns and Waser 2009; Wang et al. 2014). Review of Wong et al. 2014 has been cited in the text but not included in the references list. Please either provide the reference with complete publication details or delete the in-text citation from the text. [Reply by Author] In-text citation deleted: Hobbie et al. 2008; Larrea et al. 2002.

Forest biomass accumulation is driven by tree growth and mortality while exhibiting a high degree of spatial and temporal variation. Standing and revived trees are two major carbon stocks in forests. Standing tree biomass accumulates as a function of tree growth and mortality; while downed woody debris (DWD) accumulation is driven by inputs from standing trees and outputs via decomposition-methane emissions (decomposition and combustion) during stand development. In theory, as trees age, biomass pools should reach a dynamic steady-state where inputs and outputs are roughly balanced (Bonnin and Likens 1979; Oliver and Larson 1996). The reference Oliver, C. D., Larson, B. C. 1996. Forest stand dynamics. Wiley Publishing, New York, is cited in the text but not included in the references list. Please either delete the in-text citation or provide full reference details following journal style. [Reply by Author] Deerleef, P. C., DeRienzo, C. A. 1996. Forest stand dynamics. Wiley Publishing, New York.

However, in northern hardwoods, the accumulation of tree biomass following stand-replacing disturbances such as clearcutting or blowdown is difficult to predict. A variety of simulation models have been used to characterize forest biomass dynamics, but empirical data are critical for evaluating them. One such model, developed at Harvard Brook, NH, USA, described live aboveground biomass in northern hardwood forests increasing for about 100 years following disturbance and then decreasing slightly as even-aged stands transition to unmanaged structures characterized by regeneration within small canopy gaps formed by the death of single or multiple trees (Bonnin and Likens 1979). Observational studies have reported a wide range of biomass accumulation trajectories at different sites. Aboveground live biomass at the Hubbard Brook Experimental Forest declined and declined earlier than expected, at about 100 years (Battin et al. 2014). In a meta-analysis of data from sites across the Northeastern United States, aboveground live biomass was observed to accumulate for over 100 years before reaching an asymptote (Kersten et al. 2011). Q8 [Copy Editor Aptaora to Author] Please check the term "Northeast" for correctness in the sentence "In a meta-analysis of data from sites across the Northeastern United States, aboveground live biomass was observed to accumulate for over 100 years before reaching an asymptote." (Kersten et al. 2011). Importantly, observations are sparse for forests within the transition period (100-200 years after harvest) proposed by Bonnin and Likens (1979). Since this is the developmental stage that many successional northeastern United States forests are currently occupying, a comprehensive understanding of carbon dynamics in these forests is needed for scientifically informed forest management strategies.

With time and development, successional forests may eventually resemble old growth in structure and function. One of the defining features of old-growth forests is the presence of large standing and downed trees. Old-growth stands differ from maturing (~100 years old, post-fire) stands in the Adirondacks. However, some forest stands in the Adirondacks may also have twice as much DWD exhibiting signs of advanced decomposition and 10 times more mass compared to maturing stands (McCoy et al. 1999). While there are few time frames proposed for aging forests to resemble old growth, additional data from a range of sites would allow for a more accurate estimate of how many years are needed for the diameter distribution of trees, and therefore the structural complexity of maturing forests, to resemble old growth. Q8 [Copy Editor Aptaora to Author] Please check the text "and therefore the structural complexity of maturing forests to resemble old growth" for its intended meaning in the sentence and amend if necessary. [Reply by Author] Commas added after "maturing forests."