PhD. Dissertation Capstone

Uncertainty Evaluation of Sample-Based Area Estimates in Land Cover Monitoring:

Improved Methods for Estimating Confidence Intervals and Total Variance

Dingfan Xing Major Professor: Dr. Stephen V. Stehman

23rd October 2023 ESF Bray 324 State University of New York COLLEGE OF ENVIRONMENTAL SCIENCE AND FORESTRY Graduate Program in Environmental Science (GPES) Sustainable Resources Management (SRM)

Background

Sample Data

Sample unit :

• Pixels

Sampling method:

• Simple random sampling (SRS) & Stratified random sampling (STR)

Reference Data

Area Estimates of Land Cover

Class#	Class	Area(2000)
1	Water	2.3%
2	Developed	26.0%
3	Disturbed	0.0%
4	Barren	0.0%
5	TreeCover	51.7%
6	Grass&Shrub	3.0%
7	Cropland	13.7%
8	Wetland	3.0%

Confidence Intervals for a Proportion: Rare Classes

 $CI_W = \hat{p} \pm z * SE(\hat{p})$

Undercoverage Problem

Alternative Intervals?

Factors Affecting Coverage When H>2?

	μ
1	• • • •
2	
3	
4	
5	
6	• • • • • • • •
7	
8	
9	
10	· · · · · ·
11	· · · · · ·
12	
13	· · · · · · · · ·
14	
15	
16	0 0 0 00 00
17	
18	· · · · · · ·
19	0 0 0 00 00 0
20	o oo oo o o o

Manuscript 1. Factors Affecting Confidence Interval Coverage for Proportion of Area of a Rare Class in Stratified Random Sampling

Background

Total Variance Estimation

Manuscript 2 & 3

***** Three Manuscripts

Confidence Intervals for a Proportion: Rare Classes

Manuscript 1. Factors Affecting Confidence Interval Coverage for Proportion of Area of a Rare Class in Stratified Random Sampling

***** Total Variance Estimation

Manuscript 2. Using Interpenetrating Subsampling to Incorporate Interpreter Variability into Estimation of the Total Variance of Land Cover Area Estimates

Manuscript 3. Applications of Total Variance Estimation Incorporating Reference Data Variability to Area Estimates of Land Cover

Manuscript 1

Confidence Intervals for a Proportion: Rare Classes

Introduction

Modifications for stratified random sampling

- Effective sample size (*neff*) (Franco et al. (2019))
 neff method is based on estimating effective sample size
- *sumstrat* (Stehman and Xing (2022))
 sumstrat is based on summing stratum-specific confidence bounds

However...

Franco et al. (2019) focused much of their analysis on cluster sampling

Stehman and Xing (2022) limited the investigation to H=2

Results

Confidence Intervals

✓ Allocation

- ✓ Sample size
- ✓ Impact of stratum weight
- Impact of distribution of omission error

Results

✓ Allocation

----- Wald ------ neff ------ sumstr70 ------ sumstr80

✓ Impact of stratum weight

Impact of distribution of area of omission error to strata

Results

Confidence Intervals

✓ Allocation

- ✓ Sample size
- ✓ Impact of stratum weight
- Impact of distribution of omission error

— Wald — neff — sumstr70 — sumstr80

Impact of stratum weight

Impact of distribution of area of omission error to strata

Case Study

CS #	#of Strata	р%	n	Wald	neff	sumstr70	sumstr80
CS1	3	0.09	1000	86	86	91	95
CS2	3	0.43	870	64	62	90	91
CS3	3	0.50	1000	89	90	88	93
CS4	3	6.16	994	89	89	91	98
CS5	4	6.77	997	89	90	96	99
CS6	4	9.70	4021	90	90	96	99
CS7	5	0.70	977	79	82	92	96
CS8	6	0.71	970	85	86	94	97
CS9	6	1.60	970	88	89	92	96
CS10	6	2.26	970	89	89	94	97
CS11	6	3.11	970	88	88	92	96
CS12	6	6.45	997	89	89	98	100
CS13	6	8.51	970	90	90	93	93

	Equal	Optimal						Proportional				
CS #	Wald	neff	sumstr70	sumstr80	Wald	neff	sumstr70	sumstr80	Wald	neff	sumstr70	sumstr80
CS1	89	89	91	95	90	90	92	96	52	92	92	99
CS2	47	44	86	86	83	80	90	93	82	93	93	97
CS3	91	91	88	93	91	91	91	95	71	93	72	99
CS4	82	82	90	97	88	89	91	97	90	90	93	97
CS5	90	89	95	98	89	89	95	99	90	90	96	96
CS6	89	89	96	99	90	90	96	99	90	90	96	99
CS7	72	79	90	94	88	87	99	100	82	83	96	98
CS8	35	32	93	93	86	86	94	97	88	89	95	98
CS9	77	73	71	93	88	88	92	96	88	89	94	97
CS10	65	63	90	92	88	87	93	96	89	89	94	97
CS11	75	76	92	96	83	83	95	98	88	89	92	97
CS12	89	89	98	100	90	90	99	90	89	89	98	100
CS13	86	85	81	91	89	89	94	98	90	90	95	98

Actual sample size and sample allocation

Populations and equal, optimal and proportional allocation

Discussion & Conclusion

- Wald interval was subject to substantial undercoverage, particularly for equal and optimal allocation when the sample size was small
- The *neff* approach performed well when proportional allocation was implemented.
- The *sumstrat* interval improved the coverage for equal and optimal allocation, AND coverage was stable over variation in weights, and omission error distribution.

if(n1[i]<2){
 i=i
}
else{
 SampleS1<-runif(n1[i], mi)</pre>

SampleS1<-runif(n1[i], min=0,max=1)
n11[i]<-length(which(SampleS1[]<=p1))
Pro11[i]<- n11[i]/n1[i]</pre>

SampleS2<-runif(n2[i], min=0,max=1)
n21[i] <- length(which(SampleS2[]<=p2))
Pro21[i]<- n21[i]/n2[i]</pre>

SampleS3<-runif(n3[i], min=0,max=1)
n31[i]<-length(which(SampleS3[]<=p3))
Pro31[i]<- n31[i]/n3[i]</pre>

VarP1 <- (Pro11[i]*(1-Pro11[i]))/(n1[i]-1)
VarP2<- (Pro21[i]*(1-Pro21[i]))/(n2[i]-1)
VarP3 <- (Pro31[i]*(1-Pro31[i]))/(n3[i]-1)</pre>

Esti<-Proll[i]*W1+Pro21[i]*W2+Pro31[i]*W3 #Estimate from a sample Var<-VarP1*W1*W1+VarP2*W2*W2+VarP3*W3*W3 #Estimate variance EstiProdAcc<- Proll*W1/Esti #Estimate prod's Acc EstiUserAcc<- Proll #Estimate User's Acc SE<-sqrt(Var) #Estimate standard error

#wilson C.I
WilsonCL_1<- BinomCI(n11[i], n1[i], conf.level = 0.85, method = "wilson")
WilsonCL_2<- BinomCI(n21[i], n2[i], conf.level = 0.85, method = "wilson")</pre>

Developed the R program to help user to test out which interval is better to use

Map strata weights?

Sample allocation ?

My Contribution

- ✓ Investigate the factors potentially related to coverage
 - Omission error distribution?
 - Sample size ?
 - Confidence Interval methods?
- Expand the investigation of confidence interval properties for stratified sampling to H>2

H=3; H=4 or even more?

✓ Develop R programs to help users determine which confidence interval methods work well for a given application.

Conifer forest
 Hardwood forest
 Developed
 Cropland
 Water

Manuscripts 2 & 3

Total Variance Estimation

Data – LCMAP Sample

Land Cover, Monitoring, Assessment and Projection (LCMAP)

LCMAP Sample

Sample: n_s=25,000 in CONUS

Interpreter 1

Subsample: $n_r = 6080$ duplicate interpretation

	Map‰	Map%	Interp 1	Interp 2
Class	Sample	Subsample	Subsample	Subsample
Tree Cover	25.8	25.6	28.2	28.1
Developed	3.9	3.9	5.3	5.3
Cropland	23.7	23.6	17.2	17.8
Grass/Shrub	35.2	35.2	38.3	37.6
Wetland	5.3	5.1	5.0	4.5
Water	5.0	5.4	5.2	5.5
Barren	1.1	1.0	0.9	1.2

Data – LCMAP Pilot

LCMAP Pilot Study Puget Sound Region

LCMAP Pilot

 n_s =300 in Puget Sound Region

 n_r =300 Interpreted by 7 interpreters

Reference labels

-	Source	Forest	Developed	Agriculture	Grass/Shrub	Wetland	Water	Barren	Rare_com
	Map	51.7	26.0	13.7	3.0	3.0	2.3	0.0	8.3
	Int 1	51.0	31.7	10.7	2.3	1.3	3.0	0.0	6.6
	Int 2	54.0	29.3	9.7	2.0	2.3	2.3	0.3	6.9
	Int 3	45.7	28.3	8.0	12.0	3.3	2.7	0.0	18
	Int 4	51.7	30.3	8.3	2.7	5.0	2.0	0.0	9.7
	Int 5	53.0	25.3	10.3	6.3	2.7	2.3	0.0	11.3
	Int 6	47.3	30.7	10.0	5.7	3.3	2.7	0.3	12.0
	Int 7	48.7	29.7	9.3	5.0	5.0	2.3	0.0	12.3
	Majority	51.0	28.7	9.0	3.0	3.7	2.3	0.0	9.3

Methods

Interpenetrating Subsampling Approach (IPS)

An advantage of this method is that it does not require the additional cost of duplicate interpretations. But it does require a more complex, structured assignment of sample units to interpreters.

Methods

The MEM can be used to estimate total variance as well as the variance components contributing to total variance, but additional cost to obtain the repeat measurements is required in the approach.

Methods

Repeated Measurement Error Model (MEM)

$$\begin{split} \hat{V}_{total1} &= \hat{V}_{1cen} + \hat{V}_{stand} \qquad \text{MEM}_1 \\ \hat{V}_{1cen} &= \frac{n_s}{2n_r} \sum_r \frac{z_k^2}{\pi_k} + \frac{n_s(n_s - 1)}{2n_r(n_r - 1)} \sum_{k \neq l} \sum_r z_k z_l / \pi_{kl} \\ \hat{V}_{stand} &= (1 - n/N) \frac{\hat{p}(1 - \hat{p})}{(n - 1)} \qquad \text{Simple random sampling} \\ \hat{V}_{stand} &= \sum_{h=1}^H W_h^2 (1 - \frac{n_h}{N_h}) \hat{p}_h (1 - \hat{p}_h) / (n_h - 1) \\ &\qquad \text{Stratified random sampling} \end{split}$$

$$\hat{V}_{total2} = \hat{V}_1 + \hat{V}_2 = \hat{V}_{11} + \hat{V}_{12} + \hat{V}_2 \qquad \text{MEM}_2$$
$$\approx \hat{V}_{11} + \hat{V}_{12} + \hat{V}_{stand}$$

$$\widehat{V}_{11} = \frac{n_s}{2n_r} \sum_r (z_k/\pi_k)^2$$

$$\widehat{V}_{12} = \frac{n_s(n_s - 1)}{2n_r(n_r - 1)} \left\{ \left(\sum_r z_k / \pi_k \right)^2 - \sum_r (z_k / \pi_k)^2 \right\}$$

 V_{stand} is a biased estimate of V_2 (overestimate) so it would generally fall between estimating V_2 and V_{total}

Methods

 \checkmark

- ✓ Monte-Carlo Hybrid Variance Estimator (MCHybrid)
 - McRoberts et al. (2018)
- ✓ Monte-Carlo Measurement Error Model (MCMEM)

Descriptive Measures of Interpreter Variability -

• Bootstrapping

Cochran (1977)

• Developed in this study

Interpreter inconsistency (\hat{I} %) for the LCMAP sample and LCMAP Pilot sample

Index \hat{I}

	LCMAP	LCMAP
Class	sample	Pilot
Water	5	7
Cropland	11	22
TreeCover	12	15
Developed	17	15
Grass/Shrub	17	65
Wetland	21	47
Barren	49	

- Water Tree cover and developed had the smallest index \hat{I} for the two samples.
- Grass/shrub and Wetland had the largest interpreter inconsistency in both LCMAP sample data and LCMAP Pilot data.

Results ✓ Interpenetrating Subsampling Approach (IPS)

LCMAP Pilot data

	Class	<i>g</i> =2	<i>g</i> =3	<i>g</i> =4	g=5	<i>g</i> =6	\hat{V}_{stand} (%)	
	Forest	0.123	0.110	0.103	0.099	0.097	0.084	-
\widehat{V}_{total} (%)	Developed	0.083	0.079	0.077	0.075	0.074	0.068	
	Agriculture	0.031	0.030	0.030	0.029	0.030	0.027	
	Grass/Shrub	0.071	0.053	0.044	0.038	0.034	0.010	
	Forest	1.46	1.31	1.22	1.18	1.15		
Ω D	Developed	1.23	1.17	1.13	1.11	1.08	0.160 -	lotal v
V _{total} /V _{stand}	Agriculture	1.13	1.11	1.09	1.08	1.10	0.100	
	Grass/Shrub	7.06	5.26	4.37	3.80	3.44	0.120 -	
	Simp	lo Pand	om Som	oling			0.080 -	

Simple kandom Sampling

_

□ Results ✓ Interpenetrating Subsampling Approach (IPS)

LCMAP Pilot data

	Class	g=2	g=3	$\hat{V}_{stand}(\%)$
	Forest	0.069	0.055	0.025
	Developed	0.047	0.042	0.028
	Agriculture	0.016	0.015	0.013
$\hat{V}_{total}(\%)$	Rare_com	0.092	0.069	0.019
	Forest	2.76	2.20	
$\hat{V} = \hat{V}$	Developed	1.68	1.50	
vtotal [/] vstand	Agriculture	1.23	1.15	
	Rare_com	4.84	3.63	

Stratified Random Sampling

🗅 Results 🛛 🖌 Repeated Measurement Error Model (MEM)										MAP S
Class	Design	$\hat{p}\%$	$\sqrt{\hat{V}_{11}}$	$\sqrt{\hat{V}_{12}}$	$\sqrt{\hat{V}_1}$	$\sqrt{\hat{V}_{icen}}$	$SE_{\rm stand}$	SE _{MEM_1}	SE _{MEM_2}	
TreeCover	SRS	28.2	0.10	(0.18)	(0.15)	(0.18)	0.28	0.22	0.24	
Developed	SRS	5.3	0.06	(0.12)	(0.10)	(0.12)	0.14	0.08	0.10	
Cropland	SRS	17.2	0.08	0.04	0.09	0.04	0.24	0.24	0.26	
Grass/Shrb	SRS	38.3	0.13	(0.25)	(0.22)	(0.25)	0.31	0.17	0.21	
Wetland	SRS	5.0	0.06	0.28	0.28	0.28	0.31	0.41	0.42	
Water	SRS	5.2	0.03	0.05	0.06	0.05	0.31	0.31	0.31	
Barren	SRS	0.9	0.05	(0.10)	(0.08)	(0.10)	0.31	0.29	0.30	Totaly
TreeCover	STR	28.2	0.10	(0.10)	(0.04)	(0.18)	0.16	(0.07)	0.16	from M
Developed	STR	5.4	0.06	(0.10)	(0.08)	(0.12)	0.10	(0.06)	0.06	was ne
Cropland	STR	17.1	0.08	0.12	0.15	0.03	0.16	0.16	0.21	in STR.
Grass/Shrb	STR	38.3	0.13	(0.25)	(0.22)	(0.25)	0.20	(0.15)	(0.07)	
Wetland	STR	4.9	0.08	0.35	0.36	0.27	0.09	0.28	0.37	MEM_
Water	STR	5.3	0.04	0.11	0.12	0.05	0.05	0.07	0.13	negativ
Barren	STR	0.9	0.05	(0.08)	(0.06)	(0.10)	0.05	(0.08)	(0.04)	OT IVIEN

LCMAP Sample data

Total variance estimated from MEM_1 and MEM_2 was negative more often in STR.

MEM_2 resolved the negative variance problem of MEM_1 to some _____ extent.

LCMAP Pilot data

Simple random sampling

Comparison of the Different Total Variance Estimators

Class	SE_{stand}	MEM_1	MEM_2	MCMEM_D
TreeCover	2.89	3.50 (1.09)	3.59 (1.07)	2.88
Developed	2.62	2.83 (0.75)	2.99 (0.73)	2.63
Cropland	1.66	1.68 (0.26)	1.88 (0.24)	1.69
Grass/Shrub	0.99	2.37(2.07)	2.62 (2.00)	1.28
Wetland	1.08	1.52 (0.58)	1.65 (0.54)	1.04
Water	0.87	0.90 (0.06)	0.93 (0.07)	0.90

- The standard errors obtained from standard variance estimator were close to the standard errors from MCMEM method using majority labels among 7 different interpreters.
 - Two MEM methods show higher values of SEs compared to other methods
- The largest difference of SEs between MEM and other methods was observed in grass/shrub, this class was also observed with larger inconsistency between 21 pairs of 7 interpreters

Stratified random sampling

LCMAP Pilot data

Comparison of the Different Total Variance Estimators

Class	$\mathrm{SE}_{\mathrm{stand}}$	MEM_1	MEM_2	MCMEM_D	MCHyb
Tree Cover	1.57	2.64 (1.37)	2.49 (0.86)	1.73	2.27 (0.05)
Developed	1.68	2.06 (0.94)	2.07 (0.53)	1.79	2.44 (0.02)
Cropland	1.15	1.21 (0.37)	1.47 (0.19)	1.19	1.58 (0.01)
Grass/Shrub	0.98	2.38 (2.08)	2.18 (1.85)	1.26	1.24 (0.20)

- In general, the standard error using different total variance estimators are higher than the SE of standard variance, indicating measurement variance is an important contribution in total variance, in practice, we need to incorporate it in total variance estimation.
- Hybrid estimator has relatively "stable" SE than MEM methods among all 21 pairs of interpreters – with smaller values of standard deviation among all 21 pairs
- Same as in simple random sampling, the SEs from two MEM approaches and hybrid estimator were relatively higher than other methods.

□ Conclusion & Discussion

Manuscript 2. Using Interpenetrating Subsampling to Incorporate Interpreter Variability into Estimation of the Total Variance of Land Cover Area Estimates

- Interpenetrating subsampling provides an easy way to estimate the total variance, and it is a practical approach for large-scale studies.
- As the number of subgroups increased, the total variance estimated by IPS decreased.
- A greater number of subgroups in IPS resulted in smaller variability of the estimated total variance over different random partitions of the sample into the IPS subgroups.

□ Conclusion & Discussion

Manuscript 3. Applications of Total Variance Estimation Incorporating Reference Data Variability to Area Estimates of Land Cover

- Compare different total variance estimators applied to land cover reference data.
- Derived the formulas of the MEM estimator for stratified sampling.
- This study examined the MEM applied to both simple random and stratified random estimates at the country level dataset—LCMAP CONUS.
- Negative variance estimates were observed for MEM methods.
- When duplicated labeling of all sample pixels was possible, two Monte-Carlo simulation approaches – MCHybrid and MCMEM provide alternative reliable ways to estimate total variance.

My Contribution

- ✓ First study which introducing IPS to the environmental field
- ✓ Explore the properties of IPS
 - Variability over different random partitions into subgroups
 - Variability over different pairs of interpreters
- ✓ Provide the recommendations to reduce the contribution of interpreter variance
 - Interpreter variance can contribute substantially to the total variance
 - More interpreters help to reduce the total variance in IPS
- Apply different total variance estimators to operational large-area land cover monitoring program-- LCMAP
 - Contribute the formulas of the MEM estimator for stratified sampling
 - Problem of negative estimates of variance estimates

Overall

(1) Extend the evaluation of confidence interval methods identifying factors of the population and sampling design that are related to coverage to applications in which more than two strata are present in stratified random sampling.

(2) Apply the IPS approach to incorporate interpreter variability into estimation of the total variance under SRS and STR, and determine the impact of the number of interpreters (subgroups) and random partition of sample to subgroups on estimate.

(3) Extend estimation of total variance incorporating reference data variability to area estimates in an operational land cover monitoring program by using the MEM and Monte-Carlo simulation estimators, and compare the variance estimates resulting from the different approaches.

Future Work

□ Future Work

Technology and complex simulation program

- More comprehensive simulation calculations
- Provide further detailed recommendations on the use of confidence intervals under complex sampling designs.
- > Extension of the models estimating total variance
 - Correlation between sampling and response variance
 - Extending to continuous variables
 - Fellegi (1964)
- Evaluating confidence interval performance taking into account interpreter variability
 - Use SE from total variance estimator which incorporates the interpreter variability when estimating confidence interval

Journal of the American Statistical Association

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/uasa20

Response Variance and its Estimation

I. P. Fellegi ^a ^a Dominion Bureau of Statistics , Canada

Acknowledgement

I want to take this opportunity to express my deepest sincerest gratitude to my advisor Dr. Stephen Stehman, who provide me strong support, valuable advice and persistent encouragement through out my academic journey. I would like to thank my committees Dr. Diane Kiernan and Dr. Eddie Bevilacqua for their kindness, understanding and efficient instruction in my research and teaching assistant work. I also warmly thank my examiners Dr. Alexandra Yurievna Tyukavina (University of Maryland), Dr. James Wickham (U.S. Environmental Protection Agency) and the chair Prof. Matthew Smith for their strong support and help.

Special thanks to my dear friends Lin Wu, Yun Zhao and Liyuan Feng for their great encouragement, to Anusha, Basanta, Fern, and Abishek for the kind help. And sincerely thank all of you attending this capstone.

This work was supported with funding from the U.S. Geological Survey (USGS), Graduate Program in Environmental Science (GPES) and department of Sustainable Resources Management (SRM) of ESF.

PhD. Dissertation Capstone

Thank you

Questions?

Dingfan Xing dixing@esf.edu SUNY-ESF Oct 23, 2023