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Sample unit :
• Pixels

Sampling method:
• Simple random sampling (SRS)  & Stratified random sampling (STR)

Area Estimates of Land Cover



Background

Alternative Intervals?

Factors Affecting Coverage When H>2?

Undercoverage Problem

❖ Confidence Intervals for a Proportion: Rare Classes 

?

Manuscript 1. Factors Affecting Confidence Interval Coverage for Proportion of Area of 
a Rare Class in Stratified Random Sampling



Background

❖ Total Variance Estimation
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Total Variance ?

Incorporating Reference Data Variability 

to Area Estimates of Land Cover

Manuscript 2 & 3



Background

Manuscript 1. Factors Affecting Confidence Interval Coverage for Proportion of Area of 
a Rare Class in Stratified Random Sampling

Manuscript 3. Applications of Total Variance Estimation Incorporating Reference Data 
Variability to Area Estimates of Land Cover

Manuscript 2. Using Interpenetrating Subsampling to Incorporate Interpreter Variability 
into Estimation of the Total Variance of Land Cover Area Estimates

❖ Three Manuscripts

❖ Confidence Intervals for a Proportion: Rare Classes 

❖ Total Variance Estimation



Manuscript 1

Confidence Intervals for a Proportion: Rare Classes

 



Forest Developed WetlandManuscript 1 Confidence Intervals for a Proportion: Rare Classes 

❑ Introduction

Wald interval Wald interval tends to 
undercover when proportion of 
area p is small
(i.e., less than 5%)

Alternative intervals

✓ Wilson Interval

Modifications for stratified random sampling

✓ Effective sample size (neff) (Franco et al. (2019))

✓ sumstrat (Stehman and Xing (2022) )

However…

Franco et al. (2019) focused much of 
their analysis on cluster sampling 

Stehman and Xing (2022)  limited the 
investigation to H=2

neff method is based on estimating effective sample size

sumstrat is based on summing stratum-specific confidence 
bounds

General form

For simple random sampling



Forest Developed WetlandManuscript 1 Confidence Intervals for a Proportion: Rare Classes 

❑Methods

Monte-Carlo Simulation

Populations

✓ H=3

✓ H=4

✓ Case study

Potential Factors



Forest Developed WetlandManuscript 1 Confidence Intervals for a Proportion: Rare Classes 

H=3

❑ Results

✓ Confidence Intervals

✓ Sample size

✓ Impact of stratum weight

✓ Impact of distribution of omission error

✓ Allocation



Forest Developed WetlandManuscript 1 Confidence Intervals for a Proportion: Rare Classes 

❑ Results

H=3

Wald neff sumstr70 sumstr80

✓ Sample size✓ Allocation



Forest Developed WetlandManuscript 1 Confidence Intervals for a Proportion: Rare Classes 

❑ Results

H=3

Wald neff sumstr70 sumstr80

✓ Impact of stratum weight



Forest Developed WetlandManuscript 1 Confidence Intervals for a Proportion: Rare Classes 

❑ Results

H=3

Wald neff sumstr70 sumstr80

✓ Impact of distribution of area of omission error to strata 



Forest Developed WetlandManuscript 1 Confidence Intervals for a Proportion: Rare Classes 

H=4

❑ Results

✓ Confidence Intervals

✓ Sample size

✓ Impact of stratum weight

✓ Impact of distribution of omission error

✓ Allocation



Manuscript 1 Confidence Intervals for a Proportion: Rare Classes 

❑ Results

H=4

Wald neff sumstr70 sumstr80

✓ Sample size✓ Allocation



Manuscript 1 Confidence Intervals for a Proportion: Rare Classes 

❑ Results

H=4

Wald neff sumstr70 sumstr80

✓ Impact of stratum weight



Manuscript 1 Confidence Intervals for a Proportion: Rare Classes 

❑ Results

H=4

Wald neff sumstr70 sumstr80

✓ Impact of distribution of area of omission error to strata 



Forest Developed WetlandManuscript 1 Confidence Intervals for a Proportion: Rare Classes 

Case Study

❑ Results

Actual sample size and sample allocation
Populations and equal, optimal and proportional allocation



Forest Developed WetlandManuscript 1 Confidence Intervals for a Proportion: Rare Classes 

❑ Discussion & Conclusion

Developed the R program to help 

user to test out which interval is 

better to use

• Wald interval was subject to substantial undercoverage, 

particularly for equal and optimal allocation when the sample 

size was small

• The neff approach performed well when proportional allocation 

was implemented.

• The sumstrat interval improved the coverage for equal and 

optimal allocation, AND coverage was stable over variation in 

weights, and omission error distribution.



Manuscript 1 Confidence Intervals for a Proportion: Rare Classes 

My Contribution

✓ Expand the investigation of confidence interval properties for 
stratified sampling to H>2

✓ Develop R programs to help users determine which confidence 
interval methods work well for a given application. 

✓ Investigate the factors potentially related to coverage  

• Sample allocation ?

• Confidence Interval methods?

• Omission error distribution? • Map strata weights?

…… ?

H=3; H=4 or even more?

Conifer forest

Cropland

Developed

Hardwood forest

Water
• Sample size ?



Manuscripts 2 & 3

Total Variance Estimation

 



Manuscript 2 & 3 Total Variance Estimation

❑ Introduction

Interpret

Forest
Developed

Wetland

Agriculture

WaterGrass/Shrub Barren

Measurement Error

Sampling Variance

Measurement Variance

Total Variance

Total Variance Estimation

➢ Measurement Error Model (MEM)

➢ Interpenetrating Subsampling Approach (IPS)

Reference
labels



❑ Data – LCMAP Sample

Manuscript 2 & 3 Total Variance Estimation

➢ LCMAP Sample

Sample: ns=25,000 in CONUS Interpreter 1

Subsample: nr=6080 duplicate interpretation Interpreter 2

Land Cover, Monitoring, Assessment and Projection  (LCMAP)



❑ Data – LCMAP Pilot

Interpret

Forest Developed Agriculture

Wetland WaterGrass/Shrub Barren

Reference
labels

LCMAP Pilot Study
Puget Sound Region

Manuscript 2 & 3 Total Variance Estimation

➢ LCMAP Pilot

ns=300 in Puget Sound Region

nr=300 Interpreted by 7 interpreters

7 Interpreters



❑Methods

✓ Interpenetrating Subsampling Approach (IPS)

Estimator of total variance

Correlated measurement variance

Coefficient of intraclass correlation Int 4Int 1 Int 2 Int 3

Divide sample pixels
into 𝑔 groups

𝑔 interpreters

Sample pixels

Manuscript 2 & 3 Total Variance Estimation

An advantage of this method is that it does not require the additional cost of duplicate interpretations. But it does 
require a more complex, structured assignment of sample units to interpreters.



✓ Repeated Measurement Error Model (MEM) 

Interpreter 1

Sample pixels

Int 1

Refence label

Interpreter 2

Refence label

Int 2

Wetland

Tree Cover Developed Cropland

Water Grass/Shrub

Barren

Disagreement

❑Methods

Manuscript 2 & 3 Total Variance Estimation

MEM_1

MEM_2

Simple measurement 
variance

Correlated measurement 
variance

Sampling variance
Variance unaffected by 
sampling

The MEM can be used to estimate total variance as well as 
the variance components contributing to total variance, but 
additional cost to obtain the repeat measurements is required 
in the approach.



✓ Repeated Measurement Error Model (MEM) 

❑Methods

Manuscript 2 & 3 Total Variance Estimation

Simple random sampling

Stratified random sampling

Vstand is a biased estimate of V2 (overestimate) so it 
would generally fall between estimating V2 and Vtotal

MEM_1 MEM_2



❑Methods

✓ Monte-Carlo Measurement Error Model (MCMEM)

✓ Monte-Carlo Hybrid Variance Estimator (MCHybrid)

Manuscript 2 & 3 Total Variance Estimation

• McRoberts et al. (2018)

• Bootstrapping

• Developed in this study Original Sample

Resamples

Draw with 
replacement

…

✓ Descriptive Measures of Interpreter Variability
Response variance

Index of inconsistency 
• Cochran (1977)



❑ Results

Manuscript 2 & 3 Total Variance Estimation

Interpreter inconsistency ( መ𝐼%) for the LCMAP sample and LCMAP Pilot sample

• Water Tree cover and developed 
had the smallest index መ𝐼 for the two 
samples. 

• Grass/shrub and Wetland had the 
largest interpreter inconsistency in 
both LCMAP sample data and 
LCMAP Pilot data.



❑ Results

Manuscript 2 & 3 Total Variance Estimation

✓ Interpenetrating Subsampling Approach (IPS)

Simple Random Sampling

LCMAP Pilot data



❑ Results

Manuscript 2 & 3 Total Variance Estimation

✓ Interpenetrating Subsampling Approach (IPS)

Stratified Random Sampling

LCMAP Pilot data



❑ Results

Manuscript 2 & 3 Total Variance Estimation

✓ Repeated Measurement Error Model (MEM) 

Total variance estimated 
from MEM_1 and MEM_2 
was negative more often 
in STR. 

MEM_2 resolved the 
negative variance problem 
of MEM_1 to some 
extent.

LCMAP Sample data



❑ Results

Manuscript 2 & 3 Total Variance Estimation

➢ Simple random sampling

LCMAP Pilot data

• The standard errors obtained from standard variance 
estimator were close to the standard errors from MCMEM 
method using majority labels among 7 different interpreters. 

• Two MEM methods show higher values of SEs compared to 
other methods

• The largest difference of SEs between MEM 
and other methods was observed in 
grass/shrub, this class was also observed with 
larger inconsistency between 21 pairs of 7 
interpreters

Comparison of the Different 
Total Variance Estimators



❑ Results

Manuscript 2 & 3 Total Variance Estimation

➢ Stratified random sampling

LCMAP Pilot data

• Same as in simple random sampling, the SEs from two MEM approaches and hybrid estimator 
were relatively higher than other methods.

• Hybrid estimator has relatively “stable” SE 
than MEM methods among all 21 pairs of 
interpreters – with smaller values of standard 
deviation among all 21 pairs 

• In general, the standard error using different total variance 
estimators are higher than the SE of standard variance, 
indicating measurement variance is an important contribution 
in total variance, in practice, we need to incorporate it in total 
variance estimation. 

Comparison of the Different 
Total Variance Estimators



❑ Conclusion & Discussion

Manuscript 2 & 3 Total Variance Estimation

• Interpenetrating subsampling provides an easy way to estimate the total variance, and 
it is a practical approach for large-scale studies.

• As the number of subgroups increased, the total variance estimated by IPS decreased. 

• A greater number of subgroups in IPS resulted in smaller variability of the estimated 
total variance over different random partitions of the sample into the IPS subgroups. 

Manuscript 2. Using Interpenetrating Subsampling to Incorporate Interpreter Variability into Estimation of the 
Total Variance of Land Cover Area Estimates



❑ Conclusion & Discussion

Manuscript 2 & 3 Total Variance Estimation

• Negative variance estimates were observed for MEM methods. 

• When duplicated labeling of all sample pixels was possible, two Monte-Carlo simulation 
approaches – MCHybrid and MCMEM provide alternative reliable ways to estimate total 
variance.

• This study examined the MEM applied to both simple random and stratified random 
estimates at the country level dataset—LCMAP CONUS.

Manuscript 3. Applications of Total Variance Estimation Incorporating Reference Data Variability to Area Estimates 
of Land Cover

• Compare different total variance estimators applied to land cover reference data.

• Derived the formulas of the MEM estimator for stratified sampling.



Manuscript 2 & 3 Total Variance Estimation

My Contribution

✓ First study which introducing IPS to the environmental field

✓ Explore the properties of IPS 

✓ Provide the recommendations to reduce the contribution of interpreter variance 

•  Interpreter variance can contribute substantially to the total variance

•  More interpreters help to reduce the total variance in IPS 

✓ Apply different total variance estimators to operational large-area land cover 
monitoring program-- LCMAP

•  Problem of negative estimates of variance estimates

•  Variability over different random partitions into subgroups 

•  Variability over different pairs of interpreters

• Contribute the formulas of the MEM estimator for stratified sampling



Dissertation 

❑ Overall 

(1) Extend the evaluation of confidence interval methods identifying factors of the population 
and sampling design that are related to coverage to applications in which more than two 
strata are present in stratified random sampling.

(2) Apply the IPS approach to incorporate interpreter variability into estimation of the total 
variance under SRS and STR, and determine the impact of the number of interpreters 
(subgroups) and random partition of sample to subgroups on estimate. 

(3) Extend estimation of total variance incorporating reference data variability to area 
estimates in an operational land cover monitoring program by using the MEM and Monte-
Carlo simulation estimators, and compare the variance estimates resulting from the different 
approaches.  



Future Work

❑ Future Work

➢ Technology and complex simulation program

➢ Extension of the models estimating total variance

➢ Evaluating confidence interval performance taking into account 
interpreter variability 

• More comprehensive simulation calculations 
• Provide further detailed recommendations on the use of confidence intervals under complex 

sampling designs. 

• Correlation between sampling and response variance
• Extending to continuous variables
• Fellegi (1964)

• Use SE from total variance estimator which incorporates the interpreter 
variability when estimating confidence interval
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