GOVERNOR ANNOUNCES INNOVATIVE ENERGY PROJECT AT SUNY-ESF

FOR IMMEDIATE RELEASE:
October 23, 2002

Campus Takes Step Toward Compliance with Executive Order 111

Governor George E. Pataki today announced that the SUNY College of Environmental Science and Forestry in Syracuse will receive a $1 million grant from the New York State Energy Research and Development Authority (NYSERDA) to install a fuel cell based combined heat and power system that will provide on-site power generation. The waste heat from the fuel cell will be used for domestic hot water, space heating or space cooling on the campus.

The New York Power Authority (NYPA) is also partnering with NYSERDA to assist SUNY-ESF with design and installation of the fuel cell system.

"Combined heat and power systems can provide power to our colleges and universities more efficiently and with fewer environmental impacts than by conventional means," Governor Pataki said. "New York State is leading by example when it comes to adopting advanced, clean-energy technologies and solutions that will protect our environment and preserve our energy resources. I have challenged State-owned facilities to improve their energy efficiency and begin purchasing power from renewable resources and I applaud SUNY-ESF for pursuing this option."

The award to SUNY-ESF will support the installation and operation of a 250-kilowatt molten carbonate fuel cell, the first of its kind in New York and one of only about five in the country that generates electricity from natural gas with minimal emissions. The fuel cell will play a role in the campus's efforts to comply with the Governor's Executive Order for State facilities to purchase renewable power.

In June 2001, Governor Pataki issued Executive Order 111 directing State facilities to reduce energy use by 35 percent by 2010. It further directs facilities to purchase 10 percent of their power from renewable resources by 2005 and 20 percent by 2010. Under the order, fuel cells would qualify for the renewable energy requirement because they generate minimal emissions as a result of the electro-chemical process for generating electricity. The fuel cell to be installed at SUNY-ESF will generate about five percent of the campus's power.

NYSERDA President William M. Flynn said, "Combined heat and power systems have the potential to nearly double the efficiency of how we use our energy resources. At a time when nations around the world are concerned about greenhouse gas emissions, global warming and
sustainability, Governor Pataki and New York State are moving forward to adopt advanced energy and renewable technologies that minimize the environmental impacts resulting from our energy use."

State University of New York Chancellor Robert L. King said, "I applaud the Governor for his efforts in helping to make our campuses more energy efficient and environmentally friendly. Investing in energy efficient power sources means important financial savings for our campuses. Dollars that are currently used to heat and light our campuses will become available to support other critical campus needs."

Dr. Cornelius B. Murphy, Jr., ESF President, said, "The installation of our fuel cell is the first stage of a larger project that will eventually match the fuel cell with a gasifier fueled by wood. This innovative process will combine two high-tech methods to make wood into clean energy. There's little waste and little environmental impact. And, of course, wood is a renewable resource. Now is the time to take this important step aimed at eventually freeing New York from dependence on foreign oil while using our plentiful, renewable and environmentally friendly lignocellulosic feedstocks."

New York Power Authority President and CEO Eugene W. Zeltmann said, "This initiative is a result of Governor Pataki's commitment to make the Empire State a leader in clean energy technology. The New York Power Authority has more than doubled its annual investments in energy efficiency and renewable power under the Governor's leadership, including scores of projects at SUNY campuses. In particular, the advanced fuel cell at ESF will offer excellent opportunities for research and teaching, which in turn will spark future innovations to supply New Yorkers with economical, environmentally sound energy."

Combined heat and power systems and other forms of distributed generation systems are increasingly seen as attractive options for commercial, industrial and institutional energy users because they place power generation near the point of use, eliminating the potential for power disruptions that may result from damage or congestion in the utility grid. The technologies will prove to be particularly beneficial over the next few summers when electricity supplies are expected to be tight. Without new power plants coming on line, distributed generation from technologies like turbines and fuel cells will help alleviate demand for power from the grid to help reduce the chances of power disruptions.

The technologies will also give customers greater control over their energy costs. While they can remain connected to the power grid, customers using distributed generation and combined heat and power technologies have the ability to reduce their demand from the grid or, in some cases, eliminate demand from the grid during peak demand periods when the cost of electricity rises.

NYSERDA has worked with seven other SUNY campuses to install, or study the feasibility of installing, combined heat and power systems. The additional campuses include Albany, Buffalo,
GOVERNOR ANNOUNCES INNOVATIVE ENERGY PROJECT AT SUNY-ESF

Binghamton, Potsdam, Morrisville, Farmingdale, and Old Westbury. NYSERDA committed more than $1.5 million toward those projects. Since 1998, NYSERDA has invested $7 million into nearly 50 energy efficiency projects on 21 SUNY campuses that will lower annual energy costs by $13 million.

NYPA has invested more than $50 million in forty-three energy-efficiency projects with SUNY. The completed projects produce nearly $10 million a year in lower energy costs and reduce SUNY's annual electricity use by 92,800 megawatt hours. ###