Ivan Gitsov Ivanov | Chemistry | SUNY-ESF
e s f home link - e s f college of environmental science and forestry
e s f home link - e s f college of environmental science and forestry

Ivan Gitsov IvanovDirector of the Michael Szwarc Polymer Research Institute & Professor

Ivan Gitsov Ivanov

218 Jahn Lab
1 Forestry Drive
Syracuse, NY 13210




  • 1985-1986, Research Associate, Institute of Polymers, BAS, Sofia;
  • 1987-1993, Research Associate, Senior Research Associate, R&D Institute for Special Chemicals, Sofia;
  • 1990-1996, Visiting Scientist, Research Associate and Manager of the Polymer Characterization Facility, Cornell University and Cornell Center for Materials Research;
  • 1996-2000, Visiting Assistant Professor, Department of Chemistry and Chemical Biology Cornell University.

Michael M. Szwarc Polymer Research Institute

Service for Scientific Journals

Molecules, Macromolecular Chemistry Editorial Board Member: https://www.mdpi.com/journal/molecules/sectioneditors/macromolecular_chemistry

Current Organic Chemistry, US Regional Editor: http://benthamscience.com/journal/index.php?journalID=coc

Polymers, Editorial Board Member: https://www.mdpi.com/journal/polymers/editors#editorialboard





   The research focus of our group is aimed at the design, synthesis and evaluation of novel polymers and copolymers with unique architecture, composition and properties that can be used for advanced applications. The synthetic projects involve extensive use of various methods for organic functional group (trans)formation, polycondensation techniques and multiple procedures for controlled or "living" chain-growth polymerization. State-of-the-art methods are used for isolation, identification and characterization of the macromolecules formed including size-exclusion chromatography with multiple detection, FT-IR, UV-Vis, Fluorescence and NMR spectroscopies, MALDI-TOF spectrometry and microscopy. The biological activity and biocompatibility of selected materials are evaluated in collaboration with other research groups and laboratories in USA and Europe. The combination of these methods places our research at the interfaces of organic chemistry, polymer science, biotechnology and molecular medicine (see a recent news reports on our activities in this area  https://nccnews.expressions.syr.edu/health/suny-esf-researchers-seek-revolutionary-cancer-treatment/ and https://www.researchgate.net/profile/Ivan_Gitsov

   Our efforts are almost equally divided between the creation of novel macromolecular architectures (linear-dendritic copolymers and hydrogels, hyperbranched macromolecules and linear-hyperbranched copolymers) and the evaluation of these materials for novel biomedical applications (polymeric prodrugs, systems for covalent or passive drug binding and sustained delivery) https://blog.suny.edu/2015/06/can-we-improve-cancer-treatment-with-the-tiniest-of-nanoparticles/ and for new biotechnological uses (formation of unique semi-artificial enzymes through site-specific nano-contacts and no chemical / genetic modification of the proteins).

   A leading motif throughout our research is the development and use of “green” and sustainable chemistry practices.

Current Graduate Advisees

Current Graduate Advisees

Dariya GetyaDariya Getya

  • Degree Sought: PHD
  • Graduate Advisor(s): Gitsov
  • Area of Study: Polymer Chemistry

Kristopher GrohnKristopher Grohn

  • Degree Sought: PHD
  • Graduate Advisor(s): Nomura and Gitsov
  • Area of Study: Biochemistry

Novel Polymers


Thermosensitive Amphiphilic Janus Dendrimers with Embedded Metal Binding Sites. Synthesis and Self-Assembly. Macromolecules 51(14), 5085-5100 (2018); X. Liu, I. Gitsov

Synthesis and Characterization of Novel Amphiphilic Super-H Copolymers with Linear–Dendritic Architecture. J. Polym. Sci., Part A: Polym. Chem. 53(2), 178-182 (2015) I. Gitsov, I.V. Berlinova, N.G. Vladimirov 

"Click" Synthesis of Intrinsically Hydrophilic Dendrons and Dendrimers Containing Metal Binding Moieties at Each Branching Unit. Macromolecules 47(6), 2199-2213 (2014) L. Wang, D.J. Kiemle, C.J. Boyle, E.L. Connors, I. Gitsov

Hybrid Linear-Dendritic Macromolecules: From Synthesis to ApplicationsJ. Polym. Sci., Part A: Polym. Chem. 46(16), 5295-5314 (2008) I. Gitsov


Preparation and Characterization of Novel Amphiphilic Hydrogels with Covalently Attached Drugs and Fluorescent Markers. Macromolecules 43(23), 10017-10030 (2010); C. Lin, I. Gitsov

Novel Materials for Bioanalytical and Biomedical Applications: Environmental Response and Binding/Release Capabilities of Amphiphilic Hydrogels with Shape-Persistent Dendritic Junctions. J. Polym. Sci., Part A: Polym. Chem. 43(18), 4017-4029 (2005) C. Zhu, C. Hard, C. Lin, I. Gitsov

Novel Functionally Grafted Pseudo Semi-Interpenetrating Networks Constructed by Reactive Linear-Dendritic Copolymers .J. Am. Chem. Soc. 125(37), 11228-11234 (2003) I. Gitsov, C. Zhu

Amphiphilic Hydrogels Constructed by Poly(ethylene Glycol) and Shape-Persistent Dendritic Fragments, Macromolecules 35(22), 8418-8427 (2002) I. Gitsov, C. Zhu

Materials for Biomedical Applications

Synthesis and Hydrolytic Stability of Poly(oxyethylene H-phosphonates). J. Polym. Sci., Part A: Polym. Chem. 46(12), 4130-4139 (2008) I. Gitsov, F.E. Johnson

Immobilization of Aminothiols on Poly(oxyethylene H-phosphonates) and Poly(oxyethylene phosphate)s – an Approach to Polymeric Protective Agents for Radiotherapy of Cancer. J. Polym. Sci., Part A: Polym. Chem. 45(7), 1349-1363 (2007) K. Troev, I. Tsatcheva, N. Koseva, R. Georgieva, I. Gitsov

Immobilization of Aminothiols on Poly(oxyalkylene phosphates). Formation of Poly(oxyethylene phosphates)/Cysteamine Complexes and their Radioprotective Efficiency J. Med. Chem. 45(26), 5797-5801 (2002) R. Georgieva, R. Tsevi, K. Kossev, R. Kusheva, M. Balgjiska, R. Petrova, V. Tenchova, I. Gitsov, K. Troev

Dendritic-polymer drug delivery structures characterized by a novel triple detection method. Drug Disc. Today 6(2), 108-109 (2001) I. Gitsov, P. Clarke

Materials for Biotechnological Applications

Unprecedented Enzymatic Synthesis of Perfectly Structured Alternating Copolymers via “Green” Reaction Cocatalyzed by Laccase and Lipase Compartmentalized Within Supramolecular Complexes. Biomacromolecules, 20(2), 927-936 (2019); D.M. Scheibel, I. Gitsov

"Green" Synthesis of Unnatural Poly(Amino Acid)s with Zwitterionic Character and pH-Responsive Solution Behavior, Mediated by Linear-Dendritic Laccase Complexes. Biomacromolecules 15(11), 4082-4095 (2014) I. Gitsov, L. Wang, N. Vladimirov, A. Simonyan, D.J. Kiemle, A. Schutz

Polymer-Assisted Biocatalysis: Unprecedented Enzymatic Oxidation of Fullerene in Aqueous Medium. J. Polym. Sci., Part A: Polym. Chem. 50(1), 119-126 (2012); I. Gitsov, A. Simonyan, L. Wang, A. Krastanov, S.W. Tanenbaum, D. Kiemle

Enzymatic Nano-reactors for Environmentally Beningn Biotransformations. 1. Formation and Catalytic Activity of Supramolecular Complexes of Laccase and Linear Dendritic Block Copolymers. Biomacromolecules 9(3), 804-811 (2008); I. Gitsov, J. Hamzik, J. Ryan, A. Simonyan, J. P. Nakas, Sh. Omori, A. Krastanov, T. Cohen, S.W. Tanenbaum


Smart Polymer Recycling (with Prof. K. Troev)

Smart Polymer Recycling: Synthesis of Novel Rigid Polyurethanes Using Phosphorus-Containing Oligomers Formed by Controlled Degradation of Microporous Polyurethane Elastomer. J. Appl. Polym. Sci. 105(2), 302-308 (2007) K. Troev, G. Grancharov, V. Mitova, St. Shenkov, A. Topliyska, Ivan Gitsov

Phosphorus-Containing Oligoamides Obtained by a Novel One-Pot Degradation of Polyamide-6.  Polym. Degrad. Stab. 91(4), 778-788 (2006) K. Troev, N. Todorova, V. Mitova, St. Vassileva, I. Gitsov

A Novel Catalyst for the Glycolysis of Poly(ethylene terephthalate). J. Appl. Pol. Sci. 90(4), 1148-1152 (2003) K. Troev, G. Grancharov, R. Tsevi, I. Gitsov

A Novel Depolymerization Route to Phosphorus-containing Oligocarbonates. Polymer 42(1), 39-42 (2001) K. Troev, R. Tsevi, I. Gitsov

Full List of Publications