Commercialization of Biopulping: New Technology for Papermaking

Gary M. Scott, Research Chemical Engineer
Masood Akhtar, Microbiologist
Michael J. Lentz, Research Specialist
USDA Forest Service
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53705
USA

T. Kent Kirk, Professor
Department of Bacteriology
Ross Swaney, Associate Professor
Department of Chemical Engineering
University of Wisconsin
Madison, WI 53706
USA

1Affiliated with Weaver Industries, Inc., (dba Biotechnology Worldwide), 1380 N. Hulbert,
Fresno, CA 93728 and the Biotechnology Center, University of Wisconsin, Madison, WI 53706

2Affiliated with Weaver Industries, Inc., (dba Biotechnology Worldwide), 1380 N. Hulbert,
Fresno, CA 93728

March 1997

For publication in Proceedings of the
International Mechanical Pulping Conference

Keywords: Biopulping, mechanical pulping, chip pile, wood chips, lignin-degrading fungi

The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.

The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time, and it is therefore in the public domain and not subject to copyright.
COMMERCIALIZATION OF BIOPULPING: NEW TECHNOLOGY FOR PAPERMAKING

Gary M. Scott, Res. Chem. Engineer
Masood Akhtar, † Microbiologist
Michael J. Lentz, ‡ Res. Specialist
USDA Forest Service
Forest Products Laboratory
One Gifford Pinchot Drive
Madison, WI 53705
USA

T. Kent Kirk, Professor
Department of Bacteriology
Ross Swaney, Associate Professor
Department of Chemical Engineering
University of Wisconsin
Madison, WI 53706
USA

ABSTRACT

Biopulping is defined as the treatment of wood chips with lignin degrading fungi prior to pulping. The fungal pretreatment prior to mechanical pulping reduces electrical energy requirements during refining or increases mill throughput, improves paper strength, reduces the pitch content, reduces the cooking time for sulfite pulping, and reduces the environmental impact of pulping.

Our recent work involved scaling up the biopulping process towards the industrial level, investigating both the engineering and economic feasibility of the technology. We envision the process to be done in either a chip-heap or silo-based system for which several factors need to be considered. These factors include the degree of decontamination, a hospitable environment for the fungus, and the overall process economics. Currently, treatment of the chips with low-pressure steam is sufficient for decontamination. Furthermore, a simple, forced ventilation system can be used to maintain the proper temperature, humidity, and moisture content throughout the chip bed, thus promoting uniform growth of the fungus. The pilot-scale trial has resulted in the successful treatment of 4 tons of wood chips (dry weight basis) with results comparable to those on a laboratory scale. For mechanical pulping, a 2-week treatment results in approximately 30% energy savings, which, considering the additional equipment and operating costs, results in an overall savings of US$9 to US$20 per ton of pulp in a chip-heap system. This cost savings does not include other benefits that biopulping also confers. A larger, 40-ton trial was also successful, with energy savings and paper properties comparable with the laboratory scale.

INTRODUCTION

Mechanical pulping accounts for about 25% of the wood pulp production in the world today. This volume is expected to increase in the future as raw material resources become more difficult to obtain. Mechanical pulping, with its high yield, is viewed as a way to extend these resources. However, mechanical pulping is energy-intensive and processes paper with less strength compared with the chemical pulping processes. Biopulping, which uses natural wood decay organisms, appears to have the potential to overcome these problems. Fungi alter the lignin in the wood cell walls, which has the effect of "softening" the chips. This substantially reduces the electrical energy needed for mechanical pulping and leads to improvements in the paper strength properties. The fungal pretreatment is a natural process; therefore, no adverse environmental consequences are foreseen.

The concept of using fungal treatments in pulping processes, including refiner mechanical pulping, is based on removing or modifying the lignin in the wood. Early researchers in Sweden, Japan, and the United States [1–8] have screened several lignin-degrading fungi for their lignin selectivity and their performance during mechanical pulping. The results
indicate that fungi, which are selective for lignin degradation, produce energy savings and paper strength improvements for mechanical pulping. Taken together, these studies suggested that biorefiner mechanical pulping merited a comprehensive investigation. Consequently, in April 1987, a cooperative research program began, involving the USDA Forest Service, Forest Products Laboratory (FPL); the Universities of Wisconsin and Minnesota; and pulp and paper and related companies [9]. The overall objective of the consortium research effort was to evaluate the technical and commercial feasibility of using a fungal pretreatment prior to refiner mechanical pulping to save energy and/or improve pulp and paper properties.

The overall conclusion of the consortium effort was that biopulping works. Through the use of the proper lignin-degrading fungus, at least 30% electrical energy can be saved in mechanical pulping and paper strength properties are improved. The process appears to be less polluting than chemical-mechanical processes, and the economics look favorable if the process can be performed in a chip-pile or silo-based system [9–12]. In addition, the fungal pretreatment for mechanical pulping has less environmental impact than chemical pretreatments [13]. The use of the fungal pretreatment for sulfite pulping was also investigated by the consortium [14–15].

This paper describes the results obtained from the scaling up of this biopulping process towards the industrial level. Process economics are also discussed.

PROCESS OVERVIEW

Based on the results of previous work and discussions with mill personnel, we envision a fungal treatment system that fits into existing mill operations with minimal disturbance. Figure 1 is a conceptual overview of the biotreatment process in relation to existing wood yard operations. Wood is harvested and transported to the mill site for debarking, chipping, and screening. At this point, the first change in the normal operation is made. Chips are decontaminated by steaming, maintaining a high temperature for a sufficient time to decontaminate the wood chip surface and allowing the fungus to grow effectively. After decontamination, the chips are cooled sufficiently so that the fungus can be applied. The chips are then placed in piles that can be ventilated to maintain the proper temperature, humidity, and moisture content for fungal growth and subsequent biopulping. The retention time in the pile is 1 to 4 weeks.

![Figure 1. Overview of the biopulping process showing how the biotreatment process fits into an existing mill's wood-handling system.](image)

Although Figure 1 shows a basic concept for the process, several variations can be easily envisioned. For those mills that purchase chips rather than logs, the chips can be fed directly into the decontamination step from the trucks or other storage. The process of decontamination, cooling, and inoculation could be done in screw conveyors (described later) or on conveyor belts. If sufficient silo or other indoor capacity is available, the entire process could be enclosed, thus minimizing environmental factors.

Several engineering challenges need to be answered to make biopulping commercially viable. Most challenges involve taking a successful laboratory procedure and redesigning it to be practical on a large scale. These challenges occur in two main areas: (1) preparing and inoculating the chips and (2) maintaining the proper growth conditions for the fungus during incubation.

On a laboratory-scale basis, each step in the process (Figure 1) is done in a batchwise fashion. Recent work showed that a brief steaming of the chips allows *Ceriporiopsis subvermispora* to colonize and be effective. Although this steaming is not a complete sterilization of the wood chips, it is sufficient to allow the growth of the biopulping fungus. After steaming, the chips are near 100°C, at least at the surface. Thus, the chips need to be cooled sufficiently prior to fungal application. Complete cooling is not needed before the inoculum is added. However, the chips need to be within the temperature growth range of the fungus within a relatively short period after it is mixed with the chips. Hence, the cooling can probably take place in two stages: before inoculation and after the chips are placed into storage by using the ventilation system for additional cooling. The next step in the process is the inoculation of the wood chips with a suspension containing the fungus, nutrients, and additional
water. Challenges involved in this step include metering the inoculum, nutrients, and water to give the proper amount of fungus and obtain the correct moisture content for the chips. An additional challenge is the even distribution of the inoculum over the wood chips to promote uniform treatment.

The second engineering challenge is in maintaining the proper conditions in the chip pile to promote fungus growth. The key variables here are the temperature and humidity of the air and the moisture content of the chips. The fungus has an optimum growth range for each of these variables. Furthermore, the fungus is not self-regulating with respect to any of these variables. The best method found so far to control temperature and moisture throughout the pile was forced air. A large number of variables need to be considered in this process. Depending on the configuration of the treatment equipment and the storage system, the relative importance of the variables will change.

SCALE-UP EQUIPMENT AND METHODS

Current efforts have focused on bringing the successful laboratory-scale procedures up to the industrial level. Our laboratory process treats approximately 1.5 kg of chips (dry weight basis) at one time. Commercial levels of the process need to be about 200 to 2,000 tons or more per day of wood chips processed, representing a 10^4 increase in scale. This gap is currently being bridged through a series of experiments to bring the process scale to this level. The goals of these scale-up studies are two-fold: (1) demonstrate that chips can be decontaminated and inoculated on a continuous basis rather than a batch process as is done in the laboratory scale and (2) demonstrate that the process scales as expected from an engineering standpoint.

In our reactor scale-up studies, we investigated two types of reactor systems: tubular reactors and chip piles. The tubular reactors have an advantage in obtaining the necessary engineering and kinetic data for scaling up the process. The one-dimensional nature of the system is easy to analyze and model. The reactor also allows for well-controlled air flow in the system with air flow patterns that are well known. Heat loss from the system is easily controlled with exterior insulation, thus achieving conditions that would be experienced in the center of large chip piles. Two sizes of tubular reactors were used in our scale-up studies. These reactors were designed based on the laboratory reactors used in the research to this point. Our small tubular reactor is a cylindrical PVC tube, 0.20 m in diameter and 1.0 m high. The bottom has a polyethylene grid perforated with 6-mm holes. Forced air is supplied to the bottom of the reactor beneath the grid. The reactor has a cover with an air outlet hole in it. Our silo reactor has a capacity of approximately 160 kg of chips on a dry basis. This reactor is 0.76 m in diameter with an overall height of 2.0 m. A perforated plate at the bottom of the reactor supports the chips approximately 5 cm above the bottom of the reactor. Air is supplied to this void space at the bottom center of the reactor. The temperature is monitored at several locations in the reactors. Details on the configurations of these reactors have been published [9,16].

Both small and large chip piles were used to investigate the efficacy of biopiling under less-controlled conditions. Small chip piles typically consisted of approximately 30 kg (dry) of inoculated chips covered with 10 kg of uninoculated chips, resulting in a pile approximately 0.65 m high. We placed inoculated chips onto an insulated pad and monitored the internal temperature of the pile near the top of the pile. The chips were left in the piles for 2 to 3 weeks; at harvest, the chips were refined and the energy savings determined. The large chip piles contained from 160 to 320 kg of inoculated chips, and similar to the small chip piles, were covered with about 60 kg of uninoculated chips. The pile was about 1.1 to 1.4 m high and 2.5 m in diameter. The larger piles were built with the provision for ventilation from the center at the bottom of the pile. The temperature was monitored at various locations throughout the pile.

On a large scale, decontamination and inoculation must be done on a continuous basis and not batch-wise as has been done in the laboratory trials. To demonstrate the operation on a continuous basis, a treatment system was built that is based on two screw conveyers that transport the chips and act as treatment chambers. Figure 2 is an overview of the continuous process equipment used in the 4 and 40-ton trials performed at the USDA Forest Service, Forest Products Laboratory (FPL) in Madison, Wisconsin. Steam is injected into the first screw conveyer, which heats and decontaminates the chips. A surge bin is located between the two conveyers to act as a buffer as well as to hold the chips for a sufficient time to decontaminate. From the bottom of the surge bin, a second screw conveyer removes the chips, which are subsequently cooled with blown, filtered air into the screw conveyer. In the second half of the second screw conveyer, the inoculum suspension containing fungus, unsterilized corn steep liquor, and water are applied and mixed thoroughly with the chips through the tumbling
action in the screw conveyor. From the screw conveyor, the chips fall into the pile or reactor for the 2-week incubation. Continuous equipment of this design has been used in two trials at the FPL. In the first scale-up trial, 4 tons of spruce wood chips were inoculated and incubated at a throughput of approximately 0.5 tons per hour. The first successful outdoor trial with the biopulping fungus C. subvermispora had 40 tons of spruce treated at a throughput of 2 tons per hour (dry weight basis) continuously for nearly 24 hours. During the 2 weeks, the chip pile was maintained within the temperature growth range for the fungus, despite the outdoor exposure to very cold ambient conditions. The experimental results from these trials are discussed in detail in the following.

At the laboratory scale, most of the energy savings and paper properties were evaluated through Refiner Mechanical Pulping (RMP) in a 30-cm atmospheric laboratory refiner. These results have been published in many articles [9–12]. For the 4- and 40-ton trials, Thermo-Mechanical Pulping (TMP) was also done at FPL. In addition, samples were sent to two laboratories—Andritz Sprout-Bauer in Springfield, Ohio, and Herty Foundation in Savannah, Georgia—for independent confirmation of our results. At Herty Foundation, primary refining was done in a 30-cm pressurized refiner. At Andritz Sprout–Bauer, a 91-cm pressurized refiner was used. The remaining two or three refining stages were done at atmospheric pressure.

LARGE-SCALE EXPERIMENTAL RESULTS

From the many small-scale experiments, much of the engineering data needed to scale up the process was obtained. The key engineering findings include the degree of decontamination necessary for the fungus to grow, the cooling and inoculation of the chips, the heat generation in the pile, the compression of the chips during the incubation, and the air flow for cooling through the pile. These factors are discussed in detail in [16]; implications of these findings on the scaling up of the process are discussed here.

As we went up in scale, we expected to achieve the same results as far as energy savings and paper properties are concerned. This would indicate that the process is being scaled correctly, and the same results at the laboratory scale are achievable at large scales. Figure 3 shows the energy savings obtained for RMP at three different scales for spruce treated with C. subvermispora. As the process scale increased from the bioreactors (1.5 kg) to the large trials, the energy savings for RMP (at 100 Canadian Standard Freeness (CSF)) improved from 24% to 38% in the largest outdoor trial. The reason for this increased energy savings is not completely clear. In addition to the scale, there were some differences between the trials. First of all, the 40-ton trial was held outdoors and was strongly affected by the ambient temperature, which ranged from −4°C to 16°C. On the other hand, the bioreactors were kept in a controlled environment and did not experience temperature fluctuations. Being uninsulated, they maintained a constant 27°C temperature. The indoor 4-ton trial was also enclosed and experienced little effect of the ambient temperature. In addition, the outdoor trial was exposed to the elements including rain and wind, which could have had an effect on
Figure 4. Energy savings for TMP as a function of the CSF of the pulp for the 40-ton trial. Note that energy savings are experienced at all levels of the refining so that regardless of the final freeness, approximately 30% to 35% energy savings are realized.

For TMP at the 40-ton scale, energy savings were approximately 31% at 100 CSF, according to the refining trials done at Andritz Sprout-Bauer. This is consistent with TMP results at the bioreactor scale for loblolly pine in which the TMP results were somewhat less than the RMP results. Figure 4 shows the refining energy as a function of the freeness. After the first fiberization step, the treated chips had a lower CSF with less energy input. With each subsequent refining pass, the energy needed for the treated was significantly less than that needed for control. In fact, similar percentage energy savings were achieved at all levels of freeness. Figure 5 shows a similar effect for RMP. This indicates that the refining energy savings can be achieved regardless of the freeness level that the mill is pulping.

For RMP, improvements in the strength properties as the scale increased were also maintained. Figure 6 shows the tensile index at each of the process scales. As shown, essentially the same tensile strength was achieved for the control at all process scales. At the laboratory scale (1.5 kg), treatment resulted in improvements up to 27%. At the larger scales, improvements were 10% to 15%. The TMP results at the largest scales showed a slight improvement in the tensile strength. Figure 7 shows the same information for the tear index of the resulting papers. In this case, the tear index improved by 35% at the two larger scales for RMP and more than 50% at the laboratory scale. For TMP, there was a slight decrease in the tear strength at the 40-ton level. However, we found that the paper properties for TMP made from fungally treated wood were strongly dependent on the first-pass refining conditions that had not been optimized for the treated wood (unpublished results). Burst strength results showed a similar trend to those obtained for tear strength.

As has been the case throughout biopulping research, a darkening of the chips occurs, resulting in a loss of brightness in the paper. This brightness loss can range from 5 to 15 points, but bleaching
Figure 7. Tear strength of the resulting control and biotreated pulps compared at 100 CSF. For RMP, approximately the same improvements in tear index resulted at all process scales. A slight decrease in tear was seen in TMP, but thermomechanical pulping of biotreated wood has not been optimized.

ISSUES FOR COMMERCIALIZATION

All this work is leading to the large-scale treatment of wood chips with a lignin-degrading fungus. In a related development, large-scale treatment of wood chips with a fungus is being done commercially in the Cartapip™ process developed by the Sandoz Chemicals Co. (now Clariant Corp.) [17]. The Cartapip™ process removes pitch and controls unwanted colored microorganisms that consume bleach chemicals. It differs from our biopulping process in that the Cartapip™ fungus does not attack lignin nor does it perform biopulping as defined here. Also, decontamination of the chips and ventilation of the piles are not practiced with Cartapip™, although these steps would probably lead to better control of the process. The fact that the Cartapip™ process is successful indicates that mills are able and willing to insert a biotechnological step into their existing operations.

Several issues need to be considered in making the final scale-up to the industrial levels, which can range from 200 to 2,000 tons (dry) or more of chips being processed on a daily basis. The larger scale with a 2-week treatment time would require the routine storage of 28,000 tons of wood for a 2,000 ton per day plant, which is a pile 160,000 m³ in volume. To put the amount of chips in perspective, it would be a pile of chips 100 m long, 40 m wide, and 40 m high. Although some mills do store and manage inventories in these ranges, others may need to make significant changes in their yard operations to take advantage of this technology. As is the case with most new technology, incorporating it into new construction would be much easier than retrofitting it into an existing system. However, the first large-scale operation would probably be a retrofit. Chip rotation has to be controlled with a first-in, first-out policy to maintain a consistent furnish to the pulp mill. However, this would not be seen as a great difficulty for most mills because this strategy is currently used in inventory maintenance.

One concern is the variation in the fungal treatment in different parts of the piles. As temperatures in the pile vary, so does the efficacy of the biopulping process [16]. Also, near the edges of the piles, contamination with other microorganisms may increase competition and reduce the biopulping efficacy. However, results of our 4-ton experiment showed that the surface penetration of the contaminants was only 10 to 30 cm into the pile. In the 4-ton experiment, this represents about 5% of the volume of the pile. In larger piles, where the surface-to-volume ratio is even lower, the percentage would be less. Furthermore, untreated chips in large industrial piles often heat to more than 50°C because of respiration and oxidation of the wood and extractives as well as bacterial and fungal metabolism. This natural growth in piles leads to variation of the chip quality throughout the pile, with the hotter center of the pile being more affected by this growth. Furthermore, some indigenous organisms also degrade the cellulose in the wood, leading to pulp quality reductions and variation [11]. With biopulping, this suite of naturally occurring organisms is being replaced with a single lignin-specific fungus that is grown under controlled conditions. The single organism, together with the better control of chip-pile conditions, should lead to quality improvements.

As the scale of the project increases, the construction of needed equipment will probably become much easier. On an industrial scale, equipment is available in the needed capacity ranges that will suit the purpose for this technology. For example, chip steaming and decontamination could be easily accomplished in a pre-steaming vessel similar to that used for Kamyr digesters [18]. Alternatively, a vertical, pressurized steaming bin with a downward flow of chips could also be used. Because the vessel is pressurized above atmospheric pressure,
temperatures greater than 100°C can be used for the decontamination of the wood chips similar to the temperatures and pressures used for autoclaving. The contained unit will also significantly reduce the steam use because excess steam does not readily escape from the system. With the higher temperatures and pressures, the surge bin for decontamination time may or may not be needed. Previous work has shown that short-time steaming with good surface exposure is effective for decontamination [16]. The amount of surge capacity will depend on the decontamination needs, operational requirements, and space availability.

Cooling and inoculation will likely take place at atmospheric pressure. Mills that use air conveying to move the chips to the storage location are well suited for incorporation of this technology. The air conveying will naturally cool the chips during transport, thus requiring the inoculation to be done at the end of the conveying system and before being placed into storage. Mills that depend on other conveying methods—such as belts or screw conveyers—will probably require the addition of some type of ventilation cooling to reduce the temperature of the chips. In our pilot-scale work, the cooling of the chips through ventilation in a screw conveyor that was used for the transport of the chips was very successful, reducing the temperature of the chips sufficiently within 20 seconds during which the chips traveled 2 m. Ventilation may also be possible using belt conveyers, although this has not been tested on a laboratory or pilot scale. In the pilot scale, the inoculation was done in the same screw conveyor that was used for cooling. Inoculum (together with the necessary nutrients and additional water) was applied to the chips, then mixed in the screw conveyor. The use of belt conveyers has not been explored; however, the Cartapip™ product has been successfully applied in this fashion [17].

We have found that a two-step ventilation strategy is very effective in managing the temperature in the reactors. During the initial 3 days, during which little heat is being generated, a low air flow rate is used to maintain a positive pressure in the pile. If necessary, this initial air flow can also be used to maintain or adjust the temperature of the pile to the proper range. After the third or fourth day, the air flow is increased to a higher level to remove the generated heat from the pile. The inlet air temperature should be near the lower end of the active range of the fungus, and the rate of air flow just sufficient so that the maximum temperature of the chips is near the upper limit for the fungus. Through experience, this air flow rate can be determined, and the change can be made as soon as the increase in temperature is detected. More complex air handling strategies are also envisioned. For example, the rate of air flow could be controlled to achieve a certain temperature in a key location in the pile or to maintain the maximum temperature in the pile below a certain value. Of course, the lengthy time delays between the control action and the change in temperature need to be considered in setting up this system.

Currently, it is estimated that losses of approximately 1% per month of wood occur in outside chip storage systems [18]. This loss is mainly due to the blowing of fines, respiration of the wood, and microorganism activity. The blowing of fines and sawdust as well as microorganism growth can also cause environmental difficulties in the vicinity of the chip piles. Thus, indoor storage should also be considered as an option for incorporating a biopulping operation into a mill. Enclosing the chip storage operation will significantly reduce blowing dust and other environmental concerns. Furthermore, better control of the environment for the growth of the fungus would be maintained throughout the year. Enclosing the chip storage would also allow the recovery of the heat produced by the fungus for use in conditioning the incoming air. The geometry of the enclosed storage would also tend to reduce the blower costs. These factors could result in substantial energy savings, especially during the winter months in northern climates.

ECONOMICS OF THE PROCESS

The economic benefits of the biopulping process have been evaluated based on the process studies and engineering data obtained to date and are a result of the following:

Refrigeration Energy Savings

As discussed previously, energy savings at the refiner were used as the primary criteria for the effectiveness of biopulping. Thus, this aspect of the savings has been well-quantified experimentally. For a 2-week process, the savings should be a minimum of 25% under the worst-case conditions of wood species and minimal process control, whereas up to nearly 40% can be achieved under some circumstances. In addition, utility rates can vary substantially with the time of day or magnitude of the peak usage. In these circumstances, the cost benefits of refiner load reduction could be even greater.
Process Debottlenecking

The reduction in power requirement has a further consequence that could be of great significance for some mills. Mills that are currently throughput-limited as a result of refiner capacity may assign substantial value to the debottlenecking effect that the fungal treatment will provide.

Furnish Blend Advantages

The biopulping process results in pulps that have improved strength properties. This is advantageous in situations where the product is a blend of mechanical pulps and expensive kraft pulps. The kraft component is used to impart strength and is more expensive than the mechanical pulps. The improved strength of the biomechanical pulps would allow the required strength of the blend to be achieved with a lower percentage of the kraft pulp. Of course, the exact blend in any application will need to be optimized to ensure that all product specifications are met. This aspect could also have a debottlenecking effect in mills that are kraft production limited, because the total blended pulp rates can be greater for a given production rate of the kraft pulp component.

Environmental Advantages

The biopulping process itself is benign environmentally. Only benign materials are used, and no additional waste streams are generated. Biopulping chip storage is carefully contained. These features are in addition to the substantial amount of energy that is conserved by the process.

Economic Scenarios

These advantages must be compared with the costs of implementing and operating the biopulping process. A preliminary assessment was conducted for a 2-week treatment and a flat-plate geometry operating in a northern climate. A southern climate scenario would show somewhat lower costs because of reductions in containment and air handling requirements. The results, based on a 200 ton/day throughput, are summarized in the following and given in more detail in [16]. This initial analysis considered only the economic benefit of energy savings.

Under different scenarios and assumptions for utility costs, equipment needs, and operating costs, the net savings can range from US$10 to more than US$26 per ton of pulp produced, with an estimated capital investment of US$2.5 million. Simple rate of return can range from 29% to 72%, resulting in a payback of 1.4 to 3.4 years. Considering a 15% rate of return on capital, the savings can range from US$5 to more than US$20 per ton. These conclusions resulted from refiner energy savings of US$19 to US$30 per ton and operating costs of US$3.70 to US$8.60 per ton. Using typical values for the parameters of the analysis, a savings of US$9.61 per ton can be expected after the cost of capital with a simple payback of 2.4 years.

It is important to remember that this considers only the economic benefit of energy savings. The additional advantages of debottlenecking are considerable. Mills that are refiner limited can experience throughput increases of up to 30% from the reduction in refining energy by running the refiners to a constant total power load. Figure 8 shows the effect on the payback period as a function of the throughput increase. This analysis takes into account the additional operating and raw material costs that result from the increased throughput. The savings are from the increase in the production using the same capital. The solid, lower line shows the payback period when no additional capital (other than the capital for the biopulping equipment) is needed to debottleneck the process. Even a modest throughput increase of 10%, coupled with the energy savings of 30%, results in a payback of less than 1 year. This is equivalent to a savings of US$34 per ton at a 15% rate of return on capital.
This preliminary analysis is subject to appropriate qualifications. The capital costs are subject to some variability, in particular the costs associated with integrating the new facility into an existing site. The additional advantages of biopulping, including the environmental benefits, have not been quantified in this paper. Finally, much of this analysis is site specific, depending on the operating conditions at the particular mill considering incorporating biopulping into its operations.

CONCLUSIONS

Our engineering and economic analyses indicate that the biopulping process is technologically feasible and economically beneficial. Previous work on a laboratory-scale basis has culminated in successful larger scale trials. On the pilot scale, methods for the surface decontamination of wood chips, cooling, fungal inoculation, and controlling temperature and moisture content throughout the chip bed have been developed. Our 4- and 40-ton trials in which the decontamination of chips, subsequent cooling, and inoculation occurred sequentially in screw conveyors have given results similar or better than those obtained in the laboratory. With this information, a complete process flowsheet has been established for the commercial operation of the process. Based on the electrical energy savings alone, the process appears to be economically feasible. The additional benefits—increased throughput and stronger paper—improve the economic picture for this technology and can increase the savings to more than US$50 per ton.

A large amount of effort has gone into this research during the past 9 years to bring this technology to commercialization. However, many questions remain. The most important basic question is the mechanism of biopulping. An understanding of the mechanism of biopulping would facilitate the optimization of the process for both mechanical and chemical pulping. Furthermore, most of the work has focused on the use of the biotreatment for mechanical pulping and some work has been done for sulfitew pulping. The use of biopulping as a pretreatment for the kraft process is still an open research issue. Finally, the use of this technology for other substrates—nonwoody plants such as kenaf, straw, and corn stalks—will be investigated in the future.

ACKNOWLEDGMENTS

We thank David F. Shpley of the Energy Center of Wisconsin, Gary Myers of FPL, and Rick Bergman of the University of Wisconsin for reviewing this
manuscript prior to publication and Jean Livingston for editing the final manuscript. Many others played an important role in this research including Eric Horn and Rick Bergman, the staff of the Engineering Mechanics Laboratory, the staff of the Research Facilities Engineering, and the staff of the Pilot Plant. This work was financially supported by the Biopulping Consortium, the Energy Center of Wisconsin, the Wisconsin Alumni Research Foundation, and the University of Wisconsin University–Industry Relations Board.

REFERENCES